Детали двигателя внутреннего сгорания. Расположение двигателя и редуктора

Глава 3. ОБЩЕЕ УСТРОЙСТВО ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ.

Автомобильные двигатели имеют следующие системы и механизмы: 1). Кривошипно-шатунный механизм (КШМ); 2). Газораспределительный механизм (ГРМ); 3). Систему охлаждения, смазки, вентиляции картера, питания, зажигания, рециркуляции отработавших газов, пуска и некоторые другие.
Кривошипно-шатунный и газораспределительный механизмы обеспечивают рабочий цикл (работу) двигателя. Системы двигателя, в свою очередь, обеспечивают работу КШМ и ГРМ.
Механизмы и системы двигателя состоят из отдельных деталей и узлов. Основанием для крепления деталей и узлов перечисленных систем и механизмов является корпус двигателя .

Поскольку коэффициент расширения алюминия намного выше, чем коэффициент, соответствующий материалу цилиндра, должен быть принят заметный зазор между давлением и цилиндром. Это является причиной того, что холодная работа двигателя создает шаг из-за зазора сборки с соответствующей рабочей юмором. Чтобы избежать этого недостатка, поршень изготовлен таким образом, что его голова имеет меньший диаметр, чем юбка, так что головка частично отделена от юбки горизонтальной канавкой, которая ограничивает передачу тепла.

Существуют также другие элементы, которые препятствуют качанию поршня, он состоит из изготовления его с слегка овальной юбкой, с большим диаметром, ориентированным в направлении, перпендикулярном оси соединения поршня с шатуном. Поверхность головки поршня обычно плоская или вогнуто-выпуклая. Поверхность юбки совершенно гладкая и полированная, чтобы уменьшить трение с стенкой цилиндра. В дизельных двигателях поршневая головка имеет специальные формы и выемки, в которых сформирована камера сгорания или ее часть.

Корпус двигателя.

Поршневой двигатель внутреннего сгорания классической (традиционной) конструкции имеет корпус, состоящий из блока цилиндров (блок-картера) и головки блока цилиндров , закрытых, сверху - клапанной крышкой , снизу - масляным поддоном , спереди и сзади - передней и задней крышками коленчатого вала с самоподжимными сальниками. Корпус может иметь и иную конструкцию. Например, нижняя часть картера может быть разъёмной, и в этом случае корпус будет состоять из трёх составных частей: блока цилиндров (средней части корпуса), головки блока цилиндров (верхней части корпуса) и фундаментной рамы (нижней части корпуса) и соответствующих крышек. Встречаются двигатели с моноблочной конструкцией корпуса , в котором блок цилиндров и головка блока цилиндров выполняются в виде единой, неразъёмной отливки.Многообразие конструкций двигателей различных моторостроительных предприятий, предполагает различные подходы к их ремонту .
Корпусные детали двигателя являются основанием для крепления деталей кривошипно-шатунного и газораспределительного механизмов , а так же узлов и деталей систем смазки, охлаждения, зажигания, питания и др. Детали корпуса двигателя показаны на рис. 3.1.

Соединение между поршнем и штоком выполнено через болт, выполненный из цементирующей стали, так что стержень допускает определенное маятниковое движение относительно поршня. Болт удерживается в корпусе поршня эластичными кольцами, на рисунке 9 вы можете увидеть несколько болтов и эластичных колец.

Соединение штифта с основанием шатуна обычно выполняется с помощью так называемой системы плавающих болтов, так что болт может свободно вращаться в корпусах поршня и шатуна. Чтобы избежать его выхода к концам, доступны эластичные кольца. В других случаях штифт прижимается к основанию шатуна и остается свободным в корпусах поршней.

Блоки цилиндров отливаются из серого легированного чугуна или высококремнистых алюминиевых сплавов (силуминов ). Некоторыми фирмами практикуется изготовление блоков из металлокерамики. Блоки цилиндров двигателя с жидкостным охлаждением имеют двойные стенки, образующие «рубашку охлаждения» . Рубашка охлаждения заполняется охлаждающей жидкостью.
Блоки цилиндров двигателей с воздушным охлаждением цилиндров имеют оребрение. Цилиндры, как правило, заключены в кожух, через который вентилятором системы охлаждения прокачивается воздух.
Головки блоков цилиндров бензиновых и дизельных двигателей легковых автомобилей отливаются из алюминиевых сплавов и реже из чугуна и, за редким исключением, имеют моноблочную конструкцию, т.е. на один ряд цилиндров двигателя устанавливается одна, единая для всех цилиндров, головка. На части дизельных двигателях каждый цилиндр (или пара цилиндров) может иметь собственную головку. Головка через термостойкую прокладку крепится к привалочной плоскости блока цилиндров болтами, если блок чугунный, или гайками через шпильки, если блок алюминиевый. Болты крепления головки изготавливаются из высокопрочных сталей и при небольших диаметрах должны обеспечивать значительные усилия (моменты) затяжки . Усилия затяжки болтов (гаек) крепления головки блока регламентируется производителем и, для большинства автомобилей, в среднем составляют 9,0 – 10,0 кгс x м. Стенки головки блока двойные. Рубашка охлаждения, образованная двойными стенками головки блока соединяется с рубашкой охлаждения блока цилиндров. В головке блока выполняются камеры сгорания. На головке размещают детали газораспределительного механизма, включая распределительный вал (валы), впускные и выпускные клапаны и детали привода клапанов.

Соединение между поршнем и стенками цилиндра должно быть максимально воздухонепроницаемым, чтобы избежать утечки газа. Масло, нанесенное на стенки цилиндра, поступает туда в результате брызг, соответствующих вращательному движению коленчатого вала и головки шатуна. В нисходящих гонках сегменты царапают большую часть масла, осажденного из стенок цилиндра, оставляя минимальное количество, достаточное для обеспечения смазки и предотвращения сухости трения между поршнем и цилиндром. Упругие кольца из мелкозернистого серого чугуна придают материалу хорошую эластичность и достаточную твердость или в других случаях центробежного чугуна или стали с хромированным покрытием.

3.2. Детали цилиндропоршневой группы (ЦПГ) и
кривошипно-шатунного механизма.

К деталям цилиндропоршневой группы двигателя относятся: цилиндры (гильзы цилиндров); поршни; поршневые кольца; поршневые пальцы (рис. 3.2).



К деталям кривошипно-шатунного механизма двигателя относятся: шатуны и крышки шатунов ; коленчатый вал и крышки коленчатого вала и маховик . Часть двигателей с малым числом цилиндров (до четырёх) могут иметь балансирные валы , которые также следует относить к деталям КШМ.
Цилиндры. В рядных двигателях, если блок цилиндров отливается из чугуна, цилиндры изготавливаются совместно с блоком. В чугунных блоках многорядных двигателей и блоках выполненных из алюминиевых сплавов цилиндры могут изготавливаться в виде отдельных гильз из чугуна, специальной стали или металлокерамики.
Гильзы, которые устанавливаются непосредственно в рубашку охлаждения блока цилиндров, носят название «мокрых» . Наружная поверхность «мокрых» гильз омывается охлаждающей жидкостью. Мокрые гильзы устанавливаются в отверстия блока с зазором, и удерживаются от перемещения в этом отверстии головкой блока цилиндров. Для надёжного закрепления гильзы головкой блока цилиндров верхний бурт гильзы должен выступать за верхнюю плоскость блока на величину, регламентируемую техническими условиями (для разных типов двигателей эта величина лежит в пределах 0,02 – 0,12мм).
Гильзы, наружная поверхность которых не контактирует с охлаждающей жидкостью, носят название – «сухие гильзы». «Сухие» гильзы устанавливаются в блок с натягом . Сборка соединений с натягом означает, что диаметр втулки (гильзы) больше диаметра посадочного отверстия, в которое эта втулка устанавливается. Величина натяга измеряется в миллиметрах и определяется как разница диаметров сопрягаемых деталей. Натяг обеспечивает неподвижность гильзы при тепловом расширении материала блока в процессе прогрева работающего двигателя.
Внутренняя рабочая часть цилиндра обрабатывается на специальном оборудовании до определённой чистоты (шероховатости) и имеет ровную поверхность, которую называют « зеркалом цилиндра» . При финишной (окончательной) обработке цилиндра на его поверхность наносятся пространственно ориентированные риски, способствующие удержанию в них масла нужного для смазки поршневых колец и поршней.
На рабочие поверхности алюминиевых цилиндров могут наноситься дополнительные покрытия типа «никасил» (никель с кремнием) или кремниевые покрытия, получаемые кислотным травлением поверхности. Рабочие поверхности чугунных цилиндров, как правило, термической обработке не подвергаются и покрытий не имеют. Технология ремонта алюминиевых и чугунных цилиндров может существенно отличаться.
По внутреннему диаметру цилиндры номинальных размеров разбиваются заводом изготовителем на категории (классы) с шагом 0,01 мм. Категории цилиндров обозначаются обычно буквами латинского алфавита (A, B, C…..) и клеймятся на привалочной плоскости картера двигателя или ином месте. Класс (категория, группа) цилиндра, так же может обозначаться краской, цифрой, печатным оттиском, или другим способом.
На рис. 3.3а. показаны корпусные детали рядного шестицилиндрового двигателя, гильзованого мокрыми чугунными гильзами. На рис. 3.3б показан блок-картер рядного четырёхцилиндрового двигателя традиционной конструкции с цилиндрами, выполненными заодно с блоком.

Существует два типа сегментов: сжатие и смазка. Первые делают уплотнение между поршнем и стенками цилиндра, а секунды избегают чрезмерного количества масла, осаждаемого в стенках цилиндра. Эти два установлены правильно в горловинах, выполненных в головке поршня. Сжимающие сегменты обычно имеют прямоугольную или трапециевидную секцию и находятся в самой близкой к камере сгорания части, две в целом. Сегмент, ближайший к головке поршня, называется огнем, так как он поддерживает взрыв. Огонь 1 закруглен по его периферии, так что трение стены с цилиндром более мягкое, что уменьшает износ.



Поршни изготавливаются из алюминия легированного кремнием и другими металлами методом литья в кокиль (специальная форма) или методом штамповки с последующей обработкой детали резанием. Для некоторых типов автомобильных двигателей, работающих с высокими удельными нагрузками на детали, поршни изготавливаются из стали и металлокерамики.
Поршни воспринимают давление газов, обеспечивают передачу усилий на шатун и герметизируют камеру сгорания.
Верхняя часть поршня носит название - головка поршня , нижняя направляющая часть поршня называется юбкой поршня . На рис. 3.4 показана конструкция поршня а) бензинового двигателя и б) дизельного двигателя с полураздельной камерой сгорания

Сегмент 2 сужается так, что его наибольший диаметр падает. Смазочный сегмент 3 размещен в третьем пазу поршня, целью которого является адекватное выполнение функции скребка масла. При сборке поршня необходимо избегать совпадения разрезов сегментов в одной и той же генерирующей линии цилиндра. Шатун передает усилие поршня к колену коленчатого вала. Эта муфта выполняет функцию преобразования возвратно-поступательного движения поршня во вращающийся коленчатый вал. Стержень должен сочетать большую прочность и жесткость с небольшим весом, поэтому они изготовлены из хромованадиевой стали или никеля, полученных методом ковки или штамповки.


Головка поршня – наиболее усиленная часть поршня, где толщина стенок может достигать нескольких мм. На головке поршня выполнены канавки под поршневые кольца. В нижней канавке маслосъёмного кольца прорезаются дренажные отверстия для отвода масла. В головку поршня, для повышения износостойкости поршня, могут заделываться чугунные вставки, а на днище поршня (верхняя часть головки) и зону «огневого пояса» (часть головки поршня от днища до канавки первого компрессионного кольца) наноситься специальные покрытия. Днище поршня может иметь плоскую, выпуклую, вогнутую и иную форму. В днище поршней части двигателей выполняются углубления под клапаны (цековки) или камеры сгорания.

Впоследствии они идеально сбалансированы и сгруппированы так, что все те, которые принадлежат к одному и тому же двигателю, имеют одинаковую массу. В шатуне имеются три основные части: ступица шатуна, где она соединяет болт, корпус или стержень стержня, секцию двойного т и головку шатуна, где она соединяет коленчатый вал в локте, с интерпозиция полуоболочек.

Штифт вставлен в отверстия ступицы. Для ослабления износа, присущего трению между штифтом и крышкой шатуна шатуна, это соединение смазывается. В верхней части шатуна стержня предусмотрен сверло, через которое масло, нанесенное туда, может достигать болта. Головка шатуна разделена на две половины, в которой находится колпачок. Две цилиндрические поверхности головки шатуна соединены с подшипником, разделенным на две половины. Вращение подшипника в его корпусе предотвращается с помощью выступов, которые снабжены полуподшипниками.

Юбка поршня . Толщина стенок юбки современных поршней может быть меньше 1,5 мм. Для лучшей приработки поршня в цилиндре на юбку поршня напыляют тонкий слой олова или графитовое покрытие. Для этих же целей на юбке поршня выполняют «накатку» в виде микроканавок глубиной до 0,02 мм, в которых при работе двигателя удерживается масло. Юбки поршней двигателей с цельноалюминиевыми цилиндрами могут покрываться тонким слоем железа. В средней части юбки имеются отверстия под поршневой палец. Стенки юбки у отверстия под поршневой палец имеют утолщения (приливы), именуемые бобышками . У большинства поршней ось отверстия под поршневой палец смещена относительно плоскости симметрии поршня в сторону на 0,5 – 2,5 мм.
Поршни автомобилей российского, европейского и американского производства часто изготавливаются со стальными терморегулирующими вставками в юбке у отверстия под поршневой палец. Вставки, имеющие по сравнению с материалом поршня, меньший коэффициент теплового расширения, препятствуют расширению юбки поршня при нагревании. С той же целью уменьшения теплопередачи от головки поршня к юбке с наружной стороны бобышек выполняются подрезы, которые носят название «холодильников» , а по нижней канавке маслосъёмного кольца или на юбке поршня, сквозные разрезы «Т» - или «П» – образной формы.
Юбка поршня в плане имеет форму овала, большая ось которого перпендикулярна оси отверстия поршневого пальца. В продольном разрезе поршень имеет форму конуса, расширяющегося к юбке. Эллипсность юбки и разница диаметров поршня в верхней и нижней его части может быть более 0,50 мм.
Поршень устанавливается в цилиндр с зазором. Зазор должен компенсировать расширение поршня при нагревании и обеспечивать присутствие масла между трущимися деталями. Величина установочного зазора строго регламентируется заводом изготовителем и в зависимости от конструкции того или иного двигателя лежит в пределах 0,01 – 0,09 мм (большинство двигателей будут нормально работать с зазором 0,04 – 0,06 мм.). Установочный зазор между стенкой цилиндра и поршнем обеспечивается по большей оси овала юбки поршня.
Поршни для одного двигателя не должны отличаться по массе более чем на 2-4 грамма или не более чем на 1 -1,5% среднего арифметического от суммы масс всех поршней данного двигателя.
Заводы выпускают поршни номинального и ремонтного размеров. По наружному диаметру и диаметру отверстия под поршневой палец поршни номинального размера, разбиваются на категории (классы). Информация о размерности и весе поршня, а так же иная информация, выбивается на днище поршня (рис. 3.5).

Какой бы тип подшипника не использовался, очевидно, что для его надлежащего функционирования требуется достаточная смазка, для которого они снабжены продольными канавками или каналами, которые облегчают смазку. Масло вдавливается в них через один и тот же локоть коленчатого вала и выпускается с помощью сверла.

Это часть двигателя, которая собирает усилие взрыва и преобразует его в крутящий момент при определенных оборотах. Во время его эксплуатации он подвергается сильным ударам, вызванным взрывами, и реакциям, вызванным ускорением органов, наделенных альтернативным движением.



Поршневые кольца (рис. 3.6) изготавливаются из чугуна легированного никелем, хромом, молибденом и другими металлами или стали и выполняют следующие функции: 1).Уплотняют поршень в цилиндре; 2). Снимают излишки масла со стенок цилиндров; 3).Отводят тепло от поршня в стенки цилиндров.
Кольца имеют прямой вырез, называемый замком кольца . Замок позволяет кольцу пружинить.

Коленчатый вал расположен на блоке двигателя, к которому прикреплены основные опоры с помощью колпачков, с вставкой антифрикционных втулок. Головки соединительных стержней прикреплены к локтям или кривошипам, а их удлинение, противоположное им, являются противовесами, которые уравновешивают коленчатый вал.

Кривошипы расположены в парах с углом смещения, который зависит от расположения и количества цилиндров двигателя и составляет 180º для корпуса, представленного четырьмя цилиндрами в линии. На одном конце коленчатого вала формируется пластина, к которой крепится маховик с помощью винтов. В этой области расположен корпус подшипника, где поддерживается первичный вал редуктора, на котором установлен диск сцепления, который должен передавать движение колесам. На противоположном конце коленчатого вала установлена ​​шестерня с помощью шпоночного паза, из которого перемещение перемещается для распределительного вала, а перед ним установлен шкив также с помощью шпоночного паза, который дает движение в целом к ​​насосу воды и генератора электроэнергии.



На поршнях современных двигателей устанавливают по два – три кольца. По назначению кольца делятся на компрессионные кольца и маслосъёмные кольца . Компрессионные кольца устанавливаются в верхней части головки поршня и отвечают за уплотнение поршня в цилиндре. Маслосъёмные кольца устанавливаются под компрессионными кольцами и отвечают за снятие излишек масла со стенок цилиндров. Излишки масла через прорези в кольце и отверстия в поршневой канавке маслосъёмного кольца сбрасываются под поршень и далее стекают в картер двигателя. Маслосъёмные кольца – составные и имеют в своём составе непосредственно кольцо (или два кольца - диска) и пружинный расширитель.
Рабочую поверхность верхних компрессионных колец, работающих в условиях высоких температур и при недостатке смазки, покрывают слоем пористого хрома или молибденом для повышения износоустойчивости. Кромки рабочих поверхностей колец имеют сложную форму в связи с чем, кольца должны устанавливаться на поршень в строго определённом положении . Неправильная установка колец может привести к прорыву газов в картер двигателя, снижению компрессии и повышению расхода масла на угар. Для правильной установки кольца на поршень на верхней части кольца делается специальная метка («тор», «верх»). При отсутствии меток следует обратиться к инструкции завода-изготовителя колец.
Заводы выпускают в продажу кольца номинальных и ремонтных размеров. На верхнюю часть колец ремонтных размеров ставится цифровая маркировка (например, 40 или 80), соответствующая увеличению наружного диаметра кольца (цилиндра) на ремонтный размер (на 0,4 или 0,8 мм, соответственно).
Поршневые пальцы шарнирно соединяют поршень с шатуном. Поршневые пальцы изготавливаются из низкоуглеродистых сталей легированных никелем и хромом и представляют собой короткую стальную толстостенную трубку. Поверхность пальцев обрабатывается с высокой точностью и полируется. Для придания поверхности пальца необходимой прочности, поверхность закаливается токами высокой частоты, цементируется или азотируется.
По способу соединения поршневого пальца с верхней головкой шатуна и с поршнем различают поршневые пальцы плавающего типа и пальцы, запрессованные в верхнюю головку шатуна .
Пальцы плавающего типа устанавливаются в верхнюю головку шатуна через, запрессованную в отверстие головки, сталебронзовую, сталеалюминевую или бронзовую втулку. Между втулкой и пальцем должен быть зазор, величина которого регламентируется техническими условиями. В бобышки поршня палец вставляется с небольшим натягом. От осевого перемещения палец удерживается стопорными кольцами.
Пальцы, запрессованные в верхнюю головку шатуна, в бобышках поршня перемещаются свободно, а в головку шатуна устанавливаются со значительным натягом. Натяг должен обеспечивать неподвижное положение пальца при существенных нагрузках, действующих на детали.
По наружному диаметру пальцы подразделяются на классы, через 0,004 мм. Класс маркируется краской на торце пальца или, если позволяет толщина стенки, цифрой или буквой.
Шатун передаёт усилие от поршня на коленчатый вал двигателя и совместно с валом преобразует поступательное движение поршня во вращательное движение вала. Шатуны изготавливаются из углеродистых сталей легированных марганцем, хромом, никелем, молибденом и др. металлами методом ковки в штампах с промежуточной и финишной термообработкой и обработкой резанием. Шатун является одной из самых нагруженных деталей в двигателе. Шатун состоит из стержня, имеющего двутавровое сечение, поршневой (верхней) и кривошипной (нижней) головок. Для установки на коленчатый вал, нижняя головка выполнена разъёмной и имеет крышку. Так как отверстие в нижней головке шатуна выполняется и обрабатывается в сборе с крышкой, крышки шатунов не взаимозаменяемы и устанавливаются на головку в строго определённом положении . Для правильной установки крышек на них и нижних головках шатунов выбиваются специальные метки. С этой же целью на привалочных плоскостях крышки и головки шатуна могут выполняться соединительные ступеньки (выступы). Крышка крепится к нижней головке шатуна шатунными болтами. Для обеспечения высокой прочности болтов для их изготовления используются специальные стали, особые технологии производства и обработки. Шатуны для одного двигателя не должны отличаться по массе более чем на 2-6 граммов (1 - 1,5% среднего арифметического от суммы масс всех шатунов двигателя).
Коленчатый вал (КВ) через шатун воспринимает усилие от поршня. Крутящий момент, развиваемый на коленчатом валу, через механизмы трансмиссии передаётся на ведущие колёса автомобиля.
Коленчатые валы изготавливаются из высокопрочных легированных углеродистых сталей методом ковки или точным литьём из особого чугуна с шаровидным графитом.
Коленчатый вал состоит из коренных и шатунных шеек , соединяющих их щёк, а также противовесов, переднего носка и заднего фланца . Коренные и шатунные шейки со щеками и противовесами образуют колено. Для подачи масла к шатунным подшипникам в щеках вала от коренных шеек просверливаются специальные каналы. Каналы снабжаются грязеуловителями . Грязеуловители способствуют дополнительной центробежной очистке масла, поступающего к шатунной шейке, и представляют собой просверленный или отлитый в шатунной шейке горизонтальный или наклонный канал, выходы из которого закрыты заглушками. Смазка шеек вала принудительная под давлением. Места перехода шеек к щёкам называются галтелями . Для уменьшения вероятности поломки вала, галтели делают закруглёнными и по галтели выполняют радиусную канавку глубиной 0,2 – 0,5 мм. Канавка уменьшает напряжения в металле в зоне соединения щеки и шейки. При ремонте коленчатого вала (шлифовке шеек) глубина канавок и радиус закругления галтелей должны быть восстановлены. Коренными шейками вал устанавливают в опорах картера двигателя и закрепляют крышками. Крышки коленчатого вала не взаимозаменяемы и должны устанавливаться на опору только в одном положении . Вал с наибольшим числом опор из возможного их количества называется полноопорным . К шатунным шейкам коленчатого вала крепится шатун. В двигателях с V – образным блоком цилиндров на одну шатунную шейку коленчатого вала может крепиться два шатуна. На одну шатунную шейку может приходиться один или два противовеса. Противовесы служат для разгрузки коренных подшипников от действия моментов, создаваемых центробежными силами от вращающихся частей и сил инерции поступательно движущихся частей. Расположение кривошипов КВ и их число зависит числа и расположения цилиндров двигателя. В табл. 3.1 приведены схемы расположения кривошипов коленчатых валов разных двигателей и указан возможный порядок работы цилиндров двигателей.

Как правило, опоры, наиболее близкие к рулевому колесу, или центральные в других случаях, снабжены осевыми подшипниками в их соединении с кроватью в форме полумесяца, которые ограничивают осевое смещение коленчатого вала при срабатывании сцепления. Статическая и динамическая балансировка коленчатого вала очень важна на этапе обработки коленчатого вала. Принимая во внимание, что шатуны не выровнены с осью коленчатого вала, легко наложить, что возникают дисбалансы, которые увеличиваются на тех, которые производят кривошипы, оснащенные альтернативным движением вместе с прикрепленными к ним поршнями.


Поверхности шеек чугунных коленчатых валов закаливаются токами высокой частоты, а стальных азотируются на глубину до 1,50 мм для придания им прочности и износостойкости (ч исло ремонтов коленчатого вала зависит от глубины закалки его шеек). На передний носок КВ устанавливают шкив привода вентилятора и генератора, зубчатое колесо привода масляного насоса, звёздочку цепи, масляный отражатель и гаситель крутильных колебаний. На задний фланец КВ болтами или гайками через шпильки крепится маховик. Передний носок и задний фланец КВ уплотняется сальниками.
На рис. 3.7 показаны полноопорные валы четырёх и шестицилиндровых двигателей с полным и неполным числом противовесов. На рис. 3.8 показан фрагмент коленчатого вала V-образного двигателя с маховиком и деталями поршневой и шатунной группы.
Маховик обеспечивает равномерное вращение коленчатого вала при работе двигателя и представляет собой чугунный тщательно сбалансированный диск на обод которого надет стальной зубчатый венец для пуска двигателя от стартера. Маховик устанавливается на задний фланец коленчатого вала (рис. 3.8) в строго определённом положении, для чего болты крепления маховика расположены несимметрично, и центрируется. Для точного центрирования маховика служит бурт самого фланца, либо установочные штифты.
Подшипники коленчатого вала. Подавляющее большинство коленчатых валов

Эти массы в движениях производят вибрации, для них у них противовесы в противовес локтям, пробитые в одну часть. Маховик состоит из тяжелого колеса, которое соединено с коленчатым валом на одном из его концов, оно выступает против изменений режима вращения из-за инерционных эффектов из-за его веса, сохраняя полученную энергию с каждым импульсом, который возвращает однажды закончил это.

Рисунок 13: Инерционный маховик. Его изготовление обычно производится из чугуна и устанавливается на коленчатый вал в единственном возможном положении, балансируя вместе с ним. Чем больше цилиндров имеет более регулярный двигатель, тем больше он поворачивается и нуждается в маховике меньшей массы.

двигателей современных автомобилей вращаются в подшипниках скольжения - вкладышах . Коренные вкладыши устанавливаются в опоры и крышки коленчатого вала и центрируются в них с помощью замков. Шатунные вкладыши устанавливаются в постели крышки и нижней головки шатуна. Замок вкладыша представляет собой «усик» шириной до 4,0 мм, отогнутый при изготовлении вкладыша. Основой вкладыша является стальная лента, на которую наносят слой антифрикционного материала (т.е. материала, уменьшающего трение), состоящего из алюминиевого сплава с различным содержанием свинца, олова, сурьмы, кремния и меди. Общая толщина вкладышей современных двигателей 1,0 – 2,5 мм. Во вкладыше выполняется канавка и/или отверстие для подвода масла к шейке коленчатого вала. Вкладыши разных двигателей по составу антифрикционного состава могут сильно отличаться. На рис. 3.8 показаны различные конструкции подшипников скольжения. Заводами изготовителями в запасные части поставляются вкладыши номинального и ремонтного размеров. Ремонтный размер вкладыша выбивается на его тыльной (не рабочей) поверхности.

Напротив, для обеспечения быстрого ускорения важно минимизировать вес рулевого колеса. Наименование компонента Клапан. Функция Выпускной клапан. Металлическая часть в виде большого гвоздя с большой головкой, задачей которой является вытеснение окружающей среды выхлопных газов, образующихся внутри цилиндра двигателя после сжигания воздушно-топливной смеси. во время взрыва. Впускной клапан. Он открывается в нужное время, чтобы позволить топливно-воздушной смеси из карбюратора войти в камеру сгорания двигателя, чтобы время всасывания было выполнено.


От осевого перемещения коленчатый вал удерживается упорными подшипниками , выполненными в виде колец или полуколец и устанавливаемых в центральной или задней коренной опоре коленчатого вала. Материал, из которого изготавливаются упорные подшипники, идентичен материалу вкладышей.
Гораздо реже в автомобильном двигателестроении, для коленчатых валов применяют подшипники качения (шариковые, роликовые или игольчатые). Существенным преимуществом подобной конструкции является то, что подшипники качения не требуют смазки под давлением.

Клапанные пружины являются решающими моментами для того, чтобы двигатель максимально поддерживал синхронизацию. революции. Уплотнения клапана выполняют функцию регулирования чрезмерного прохождения масла к внутренней части двигателя. Существует 2 типа уплотнений клапана: Положительное уплотнение: оно прикрепляется к клапану и его направляющей, обеспечивая надлежащую смазку, которая предотвратит износ.

Преждевременным из-за этих деталей и избыточной жидкости, что может привести к увеличению потребления масла. Дефлекторное уплотнение: отводит масло из штока клапана. Также называемый парагуа-печать, он перемещается вдоль клапана, чтобы защитить направляющую от избыточного масла.

Конструкция двигателя. Конструкция одноцилиндровоге двухтактного двигателя подвесного мотора изображена на рис. 19. Она представляет собой картер, состоящий из двух половин (верхней 2 и нижней 1), на котором болтами или шпильками крепится цилиндр 17 со съемной головкой 13. В цилиндре движется поршень 14. Шатун 7, соединенный при помощи поршневого пальца 16 с поршнем, соединяется своей нижней головкой с цапфой кривошипа 19 коленчатого вала, которому и передает все усилие газов, давящих на поршень. Вал вращается на своих коренных шейках в под­шипниках 22 картера, последние герметически уплотнены ре­зиновыми или войлочными сальниками 20, не пропускающи­ми воздух из атмосферы внутрь картера, а горючую смесь из картера наружу.

Разделите тепло от головки клапана, пропуская шток на головку блока цилиндров. Седла клапанов. Седло клапана вставляется в головку и изготовлено из стойкого материала, но в то же время мягкое. Это позволяет идеально уплотнять клапан при закрытии. Они служат для закрытия клапанов.

Это место, где перемещается поршень. Цилиндр представляет собой кусок из прочного металла, потому что он должен выдерживать работу с высокой температурой с постоянными взрывами топлива на протяжении всего срока службы, что в экстремальных условиях приводит к чрезмерной работе.

Двигатель снабжается рядом вспомогательных деталей и агрегатов (пусковой шкив, маховик, карбюратор, магнето, свечи).

Одноцилиндровые двигатели редко изготовляются по лит­ражу более 250 см3, а потому их мощность обычно не пре­восходит 6-8 л. с. Более мощные двигатели изготовляются двухцилиндровыми или четырехцилиндровыми.

На схеме рис. 9,а приведена двухцилиндровая конструк­ция. На картере двигателя цилиндры располагаются «оппозитно», т. е. под углом 180° друг к другу. Такое же расположенис имеют и кривошипы коленчатого вала, так что поршни всегда движутся противоположно друг другу. Следо­вательно, рабочие ходы и все другие циклы в обоих цилинд­рах происходят одновременно. При таком движении поршней силы инерции в двигателе уравновешиваются полностью и остаются неуравновешенными лишь небольшие моменты от сил инерции вследствие некоторого смещения осей цилинд­ров от средней щеки кривошипа. Их приходится уравнове­шивать противовесами.

Коленчатый вал представляет собой ось с изгибами и противовесами, присутствующими на определенных машинах, которые, применяя механизм механизма кривошипа, преобразуют возвратно-поступательное прямолинейное движение в ротационное и наоборот. Это поршень, который вставляется внутри стенок цилиндра, используя гибкие кольца, называемые сегментами или кольцами. Он выполняет альтернативное движение, заставляя жидкость, которая занимает цилиндр, изменять его давление и объем или преобразовывать в движение изменение давления и объема жидкости.

Рис. 19. Двухтактный двигатель подвесного мотора ЛМР-6: 1 - нижний картер; 2 - верхний картер; 3 - шкив; 4 - верхняя коренная шейка; 5 - привод к магнето; 6 - шайбы; 7 - шатун; 8 - стопорное кольцо; 9 - стопорный штифт; 10 - футерка; 11 - провод высокого напряжения; 12 - свеча; 13 - головка цилиндра; 14 - поршень; 15 - поршневое кольцо; 16 - поршневой палец; 17 - цилиндр; 18 - ролики; 19 - цапфа кривошипа; 20 - сальники; 21 - нижняя коренная шейка; 22 - шариковые подшипники; 23 - щеки вала; 24 -карбюратор; а - прорезь под заводной шнур; б - подвод воды; в - всасывающие окна; г - продувочные окна; д - водяная рубашка

Его функция заключается в том, чтобы открыть клапан с помощью кулачка и держать его там в течение времени, необходимого для того, чтобы воздушно-газовая смесь могла войти или выйти из цилиндра, где будет происходить сгорание. Комбинезоны. Он использует моторное масло для заполнения внутренней полости и поддержания постоянного контакта с кулачками во время его поездки.

Шатун представляет собой механический элемент, который подвергается усилиям на растяжение или сжатие, передает шарнирное движение другим частям машины. В нем размещены впускные и выпускные клапаны, свечи зажигания, распределительный вал и воздухозаборник, а также бензиновые и вытяжные каналы. Он крепится к блоку винтами. Между двумя частями размещена «прокладка головки цилиндров», что обеспечивает уплотнение между блоком и герметичной головкой цилиндров. Прокладка головки цилиндров: используется для уплотнения соединения между головкой цилиндров и блоком. Он имеет несколько перфораций, через которые проходят поршни, зажимные шпильки и трубы для смазки и охлаждения. Этот насос извлекает масло из картера и отправляет его в зоны, которые необходимо охлаждать через каналы в замкнутом цикле. Масляный фильтр захватывает любые примеси, которые может содержать масло. Поршень идет вверх и вниз по цилиндрам и представляет собой поршень, который вставляется внутри стенок цилиндра гибкими кольцами, называемыми сегментами. Поршни располагаются внутри цилиндра. Поршни и сегменты Шатун Прямолинейное движение поршня становится вращением в коленчатом валу Поршень коленчатого вала Цилиндры представляют собой промежутки, через которые поршни двигаются в движении. Полезная емкость цилиндров - это так называемый цилиндр двигателя и обычно выражается в кубических сантиметрах. Объем в см3 = смещение цилиндра Цилиндр полый Поршень входит внутрь цилиндра Кто делает смесь бензина и воздуха? Над карбюратором идет воздушный фильтр, элемент, который служит для того, чтобы воздух, который поступает в карбюратор, не несет загрязнений. Воздушный фильтр Карбюратор. Бензиновый насос отправляет бензин из бака в карбюратор или в форсунки при нажатии на педаль ускорителя. Инжекционные двигатели не используют карбюратор. Они впрыскивают бензин в цилиндр с помощью электронных инжекторов, так что вводится только нужное количество бензина, что позволяет снизить расход топлива. Бензиновый насос Инъекторы Распредвал представляет собой механизм, образованный осью, в которой размещены различные кулачки. Кулачки нажимают на клапаны так, чтобы они открывались или закрывались, в зависимости от времени двигателя, в котором они находятся, в подходящий момент. Распределительный вал Давление кулачка на клапане. Когда клапан сжимается, клапан открывается. Распределитель системы зажигания Свеча зажигания создает искру для того, чтобы она взорвала смесь в цилиндре во время зажигание Еще одним важным электрическим компонентом является стартер: электродвигатель, который перемещает поршни так, чтобы двигатель мог запускаться. Этот двигатель потребляет электрическую энергию от батареи и используется только при запуске двигателя. В этом случае воздух охлаждается воздухом. Масляный метр.

  • Как правило, блок построен из сплавов стали или алюминия.
  • Цилиндр = полый Поршень входит внутрь цилиндра.
  • Он служит, помимо всего прочего, для закрытия цилиндров в верхней части.
  • Он отвечает за поддержку взрывов, возникших в камере сгорания.
Двигатель является источником питания транспортных средств.


При расположении цилиндров один над другим (односто­роннее расположение цилиндров) по схеме рис. 9,б коленчатый вал, как и в предыдущем случае, изготовляется с криво­шипами, расположенными под углом друг к другу в 180°, что также позволяет осуществить встречное движение поршней. Но процессы за цикл в них происходят не одновременно, как в предыдущей конструкции, а чередуются уже через 180°, что создает на валу двигателя более равномерный крутящий момент.

В этом случае картер не может служить общим насосом для поджатия смеси, а каждый цилиндр требует совершенно отдельной кривошипной камеры для поджатия, для чего их приходится герметически изолировать одну от другой.

За последние годы в практику подвесного моторостроения начали внедряться четырехцилиндровые двигатели. Такая конструкция вызвана необходимостью получения более мощ­ных машин. Уменьшая диаметр и ход поршня в двигателе и увеличивая число оборотов, можно создать более легкий и более уравновешенный двигатель той же мощности, чем, на­пример, двухцилиндровый, хотя и более сложный.

Картер. Картер двухтактного двигателя с кривошипно-камерной продувкой служит основанием для цилиндра и ко­жухом, предохраняющим двигатель от попадания внутрь пыли и грязи. Картер также выполняет роль насоса для продувки и наполнения цилиндра. Для этого используется его внутрен­няя полость - кривошипная камера. На картере размещают­ся цилиндры и ряд обслуживающих двигатель агрегатов: привод магнето, топливный бак и др., а внутри на подшип­никах вращается коленчатый вал.

Картер двигателя состоит из двух скрепляющихся между собой болтами половин: верхней и нижней. Для легкости он чаще всего отливается из алюминиевого сплава с 6- 8-процентным содержанием меди.

Поскольку внутри картера давление меняется от значи­тельного разрежения (вакуума) р = 0,25-0,3 кг/см² до не­которого избыточного давления р = 1,5-1,7 кг/см², необхо­димого для заполнения цилиндра свежей смесью, все места соединений требуют герметичного уплотнения прокладками, а в гнездах подшипников устанавливаются уплотняющие прорезиненные сальники. Нижним фланцем картер, при по­средстве шпилек скрепляется с фланцем дейдвудной трубы, сверху, при маховичном зажигании - с декой магнето, как у мотора А-8, а при наличии отдельного магнето - с корпусом привода магнето, как это имеет место в моторах ЛММ-6 и ЛМР-6.

Картер должен иметь по возможности наименьший внут­ренний объем, чтобы можно было получить в нем смесь до­статочного для продувки и наполнения цилиндра давления. Внутри картера на двух шариковых подшипниках вращается составной коленчатый вал. Чтобы уменьшить свободное про­странство картера, в котором сжимается воздух при поджа-тии, стенки и детали располагают возможно теснее, а махо­вик выносят наружу; щеки коленчатого вала делают круг­лыми, а длину шатуна выбирают возможно короче, доводя

Отношение длины шатуна к радиусу кривошипа λ = L\r до 3,5.

Зазоры между щеками коленчатого вала и стенками выпол­няются минимально возможными, для чего картер приходит­ся обрабатывать изнутри.

Цилиндр и головка цилиндра. Цилиндр обычно отливает­ся из мелкозернистого серого чугуна или из высококачествен­ного чугуна с примесью хрома и никеля, но встречаются цициндры, отлитые из алюминиевого сплава с запрессованной в него стальной гильзой. Снаружи цилиндр подвесного мотора и головка его имеют водяную рубашку, внутри которой для охлаждения стенок цилиндра и днища головки прогоняется охлаждающая вода. Часто для многоцилиндровых подвесных моторов цилиндры отливаются парами, заключенными в од­ну общую рубашку, образуя собой блок. Внутренняя поверх­ность стенок цилиндра (зеркало) обрабатывается всегда с большой точностью, чтобы обеспечить хорошее прилега­ние уплотнительных колец. Кроме того, шлифованная поверх­ность сильно снижает трение, повышая механический КПД двигателя.

В двухтактных двигателях цилиндр имеет ряд окон. Вы­пускные окна сообщают рабочую полость цилиндра с выпуск­ным коллектором, через который отработанные газы идут сперва в дейдвудную трубу, а затем под воду и уходят в ат­мосферу. В других конструкциях выхлопные газы направля­ются из рабочего цилиндра сперва в глушитель, а потом че­рез выхлопной патрубок в атмосферу. В спортивных и гоночных двигателях глушитель часто не ставится, так как он понижает мощность двигателя примерно на 4-8%. В них газы прямо направляются через выпускной патрубок наружу.

Цилиндр укрепляется на картере шпильками и удержи­вается гайками. Съемная головка закрывает цилиндр сверху.

Она обладает следующими преимуществами как в обработке, так и в эксплуатации:

1) Головка может быть изготовлена из другого материа­ла, более теплопроводного, чем цилиндр; чаще всего ее от­ливают из температуроустойчивого алюминиевого сплава. Легкие сплавы допускают более высокую степень сжатия горючей смеси и улучшают тепловой режим.

2) Упрощается отливка и обработка как головки, так и цилиндра.

3) Съемная головка позволяет или расточкой фланца ци­линдра, или сменой прокладок менять объем камеры сжатия, что особенно важно при форсировке двигателя (при соревнованиях).

4) Съемная головка позволяет осматривать цилиндр и счищать нагар с поршня и головки, не снимая цилиндра.

Так как резьба у алюминия при частом отвинчивании сбивается, то в стенку головки, где должна быть свеча, иног­да впрессовывается бронзовая втулка 10 (футерка, см. рис. 19), в которой и нарезается резьба под свечу.

Головка скрепляется с цилиндром также при посредстве шпилек и гаек.

Герметичность соединения головки с цилиндром дости­гается постановкой между ними медно-асбестовой или желе­зо-асбестовой прокладки. Такие же прокладки применяются и в соединении цилиндра с выхлопным коллектором; в дру­гих менее нагретых местах, как соединение цилиндра с кар­тером и впускными патрубками, ставятся обычные паранитовые или бумажные прокладки, пропитанные маслом, или пря­мо на шеллаке.

Поршень двигателя. Поршень, как и цилиндр, относится к основным деталям двигателя. В двухтактных двигателях он управляет всем процессом газораспределения, открывая и закрывая впускные, продувочные и выпускные окна.

Поршень состоит из головки (верхняя часть поршня до гнезд пальца поршня), юбки (нижняя часть поршня, служа­щая направляющей при его движении в цилиндре) и бобы­шек (внутренних приливов под гнезда пальца поршня). Что­бы газы из цилиндра не проникали в картер, на поршень на­деваются кольца, для чего в головке поршня под них прота­чиваются канавки. Чаще всего поршень снабжается двумя-тремя уплотнительными кольцами и одним маслосъемным. Для того чтобы кольца не могли во время работы провора­чиваться и попасть своими концами в прорези окон, в кольце­вые канавки устанавливаются специальные стопоры в виде небольших штифтов, удерживающих их в определенном по­ложении.

Учитывая большой нагрев верхней части поршня, часто головку его делают несколько меньшего диаметра, чем юбку, из расчета, что во время работы при нагреве их размеры выравниваются и рабочий зазор между гильзой и поршнем становится примерно одинаковым.

Стенка и днище головки поршня изготовляются всегда более толстыми, чем юбка, так как они воспринимают полное давление от сгоревших газов. Наружная поверхность поршня, помимо точности обработки, делается гладкой для уменьше­ния коэффициента трения при его движении.

Поршни подвесных моторов отливаются для легкости и лучшей теплопроводности преимущественно из алюминиевых сплавов. Благодаря высокой теплопроводности легких сплавов происходит быстрый отвод тепла от днища поршня к стен­кам цилиндра и снижается температура самой нагретой его части - днища поршня - до 220-270°, тогда как у чугун­ных поршней она достигает 400-450°. Это улучшает тепло­вой режим работы двигателя, не вызывая самовоспламенения смеси при больших степенях сжатия.

Меньший удельный вес алюминиевых сплавов снижает примерно на 25-30% общий вес поршня против чугунного, хотя и более тонкого. В быстроходных двигателях легкость поршня приобретает первенствующее значение, так как влияет на величину сил инерции, вызывающих вибрацию мо­тора и судна.

Ширина канавок под кольца у современных подвесных моторов протачивается с радиальным зазором на глубину канавки в 0,5-0,6 мм, а по высоте канавки - с допуском + 0,02 мм.

Высоту поршня двухтактного двигателя обычно делают равной ходу поршня, с прибавлением 5-6 мм на перекрытие окон.

Поршневые кольца. Поршневые кольца по своему назна­чению подразделяются на уплотнительные, или компрессион­ные, и на маслосъемные.

Уплотнительные кольца для поршня преимущественно изготовляются прямоугольного или трапецоидального сече­ния с наружным диаметром, в свободном состоянии несколько большим диаметра цилиндра, и имеют разрез, называемый замком. Величина зазора в замке допускается в рабочем состоянии 0,2-0,3 мм.


Рис. 20. Формы замков, приме­няемые в поршневых кольцах


После установки в цилиндр сжатое кольцо в силу своей упругости вплотную прижмется к зерка­лу цилиндра, создавая уплот­нение зазора. При движении поршня в ту или иную сторону кольцо попеременно прижи­мается то к одной, то к другой стороне канавки, вызывая из­нос последней.

По высоте кольца изготовляются от 1,5 до 3 мм. Более широкие кольца сильно влияют на износ канавок.

Замки колец изготовляются различной формы, начиная от прямого среза и кончая угловым и фигурным профилем (рис. 20).

Маслосъемные кольца (рис. 21), создавая уплотнение, не позволяют пропускать излишнее масло внутрь цилиндра. Благодаря им значительно снижается удельный расход масла в двигателе и уменьшается нагарообразование в камере сжа­тия и на днище поршня.

Материалом для колец служит чугун СЧ-21-40, а также специальные чугуны с присадкой фосфора и ваннадия. При изготовлении колец должны обеспечи­ваться однородная структура металла и равномерная их уп­ругость.



Рис. 21. Маслосъемные кольца: а - кольцо без отверстий; б - кольцо с про­дольными отверстиями


Шатун состоит из трех основных ча­стей: верхней головки шатуна, обхватывающей палец, ниж­ней головки шатуна, обхватывающей шей­ку, или цапфу, и те­ла шатуна, связывающего их между собой.

За последнее время сочленение нижней головки с цапфой кривошипа делается преимущественно роликовым. Нижняя головка шатуна делается неразъемной и получается более легкой. Выгода такой конструкции не только в легкости и уменьшении трения, но и в уменьшении ее габаритов и в боль­шей надежности смазки, чем при скользящем подшипнике. Длина скользящего подшипника, по расчету, получается при­мерно в два-три раза больше роликового, что повышает не только вес нижней головки, участвующей в росте центробеж­ных сил кривошипного механизма, но и общий вес двигателя, так как требует более тяжелых противовесов и удлиняет сам двигатель. Верхняя головка шатуна чаще выполняется со вставной гладкой втулкой из бронзы, гораздо реже встреча­ются головки со вставными длинными тонкими роликами (иглами), образующими «игольчатый подшипник».

Смазка верхней головки осуществляется через отверстие вверху головки, в которое попадает масло, стекающее с днища поршня.

Тело шатуна, или стержень, изготовляется для лучшего сопротивления продольному изгибу таврового сечения, реже прямоугольного или трубчатого (полого) сечения.

Материалом для шатунов служат углеродистые и высо­кокачественные стали. Ковкий чугун и легкие сплавы при­меняются как исключение.

Поршневой палец. Поршневой палец шарнирно соединяет поршень с шатуном. Через него передается вся сила давле­ния газа с поршня на шатун. Палец нагружается почти ударно, а потому его изготовляют достаточно прочным. Для легкости поршневой палец изготовляется полым, так как его вес, как и вес поршня, участвует в массе возвратно-поступа­тельно движущихся частей и влияет на величину сил инер­ции кривошипно-шатунного механизма.

Поршневой палец, изготовленный из вязкой малоуглеро­дистой или легированной стали, подвергается цементации и термообработке.

Палец не должен иметь продольного перемещения вдоль своей оси, иначе он может поцарапать зеркало цилиндра. Чтобы этого не произошло, палец фиксируют или при помо­щи пружинных стопорных колец-замков, или при помощи алюминиевых грибков.

Стопорные кольца и грибки не допускают продольного смещения пальца, не препятствуя пальцу поворачиваться во­круг своей оси, отсюда он получил название плавающего. Такое крепление снижает износ пальца и удлиняет срок его службы. Наружная поверхность пальца шлифуется.

Коленчатый вал. Коленчатые валы подвесных моторов ча­ще всего изготовляются составными, цапфа и коренные шей­ки соединяются со щеками или при посредстве конусов со шпонками, а затем затягиваются гайками (разъемное соеди­нение, рис. 22), или запрессовкой цапф и коренных шеек в щеки кривошипа (неразъемное соединение, см. рис. 19), или комбинированным способом, позволяющим производить разъем по цапфе кривошипа (рис. 23).

Сборка составного коленчатого вала при неразъемном шатуне производится совместно с шатуном. Перед оконча­тельной сборкой двух щек с цапфой сперва насаживается шатун со всеми своими роликами, а затем уже заводится на шпонке щека, затягивается гайкой и фиксируется замковой шайбой; то же самое и при прессовом соединении: сперва сажается на роликах шатун, а затем окончательно запрессо­вывается цапфа в щеки.

Существенным недостатком неразборной (прессовой) кон­струкции является то, что в случае износа цапфы или шатуна или смены роликов приходится заменить весь комплект вала, а не одну только износившуюся часть.


Рис. 22. Разъемная конструк­ция коленчатого вала: 1 - щека; 2 - цапфа кривоши­па; 3 - коренная шейка, или цапфа


Щеки коленчатого вала двух­тактного двигателя с кривошипно-камерной продувкой выпол­няются всегда в виде круглого диска с приливами (противове­сами), расположенными со сто­роны, противоположной шатуну.

Часто вместо противовесов для уравновешивания центро­бежных сил в двухтактных дви­гателях прибегают к выфрезировыванию карманов в щеках ко­ленчатого вала, около цапфы, кривошипа, с закрытием их сверху для достижения полноты объема щеки тонкими пластинами. Такой способ, например, применен в конструкциях подвесных мото­ров ЛММ-6 и ЛМР-6. Материалом для щек и коренных шеек служит простая углеродистая сталь; для цапф кривошипа применяется хромоникелевая сталь с последующей цементацией и термообра­боткой.


Рис. 23. Компилированная конструкция коленчатого вала


Нижний конец ко­ленчатого вала для соединения с вертикаль­ным валом мотора, пе­редающего мощность двигателя гребному винту, снабжается или специальными шлица­ми или соединительной пластиной, связываю­щей эти детали.

Маховик. В двига­теле работа происхо­дит неравномерно, от­дельными толчками. Чтобы сгладить эти толчки и обеспечить гребному винту более равномерное вращение, на коленчатом валу ус­танавливают маховик. Маховик помогает запуску мотора, получив на это энергию или от человека через ручной привод (шнур), или от специального механизма (старте­ра) через шестерни.

Иногда в маховике располагаются магниты для системы зажигания и выработки тока для стартера и освещения (ма­ховичное магнето, магдина). Вес маховика в основном зависит от неуравновешенности двигателя, от быстроходности, его тактности, числа цилиндров в нем и конструкции самого маховика.

Маховик обычно устанавливается в подвесных моторах, на верхнем конце коленчатого вала, расточенном на конус, и закрепляется шпонкой и гайкой. По ободу маховика протачи­вается канавка под пусковой шнур. На верхнем буртике ка­навки делается прорезь под закладку шнура с узлом на конце, чтобы можно было зацепить им за прорезь (а на рис. 19). Узел прочно сцепляет шнур с маховиком.

Маховики для подвесных моторов обычно изготовляются из алюминиевых сплавов, внутри, которых при махозичном магнето устанавливается магнит (см. рис. 31).