Как делают резину. История резины. Для чего нужна вулканизация Какое вещество было прародителем резины

1817 — немецкий барон Карл фон Дрейс изобрёл велосипед, сделанный полностью из дерева. Можно сказать, что на нём были установлены деревянные шины.

1844 — Чарльз Гудиер открыл процесс вулканизации резины, который изменил историю велосипедных шин. До открытия процесса вулканизации резина была нестабильной, поскольку не сохраняла свою форму: становилась слишком мягкой в жаркую погоду и хрупкой на холоде. Изобретение компании Goodyear превратило резину в мягкий материал, который идеально подходил для велосипедных шин. В течение нескольких лет велосипедные шины были сделаны из твердой резины. Хотя они были тяжелыми и не обеспечивали плавный ход, но они все же были крепче, чем предыдущие. Сегодня еще можно найти несколько типов шин из твердого каучука.

1845 — Инженер Роберт Томпсон из Англии получил патент на своё изобретение. Шина Томпсона состояла из камеры, которая изготавливалась из кусков парусины, пропитанных каучуком и самой покрышки из кожи, прикреплённой к ободу колеса заклёпками. Томпсон назвал это изобретение воздушным колесом. Гениальное изобретение Томпсона не имело коммерческого успеха и скоро было забыто.

1870 — В Англии, инженер по имени Джеймс Старлей выпускает велосипед , на котором использовал цельные литые резиновые шины, установленные на стальные диски.

1882 — Томас Б. Джеффри, производитель велосипедов и изобретатель, получил патент на улучшенную шину. Новшеством было то, что он по краям шины вплавлял в резину проволоку, которая жёстко фиксировала её на ободе колеса. До этого, велосипедные шины крепили к краю обода с помощью клея или заклёпок, что было небезопасно, потому что шины часто сходили с обода.

1887 — , шотландский ветеринар, разрабатывает первую в мире пневматическую шину, наполненную воздухом на трехколесный велосипед своего сына. Шина Dunlop, для которой он был выдан патент в 1888 году имеет кожаный шланг, выступающей в качестве внутренней трубки и внешней части шины с резиновым протектором. Его изобретение позволило комфортно ездить на велосипеде. Такие шины применялись вплоть до момента изобретения отдельной камеры.

1893 — Август Шредер и его сын Джордж Шредер изобретают улучшенную версию клапана для удержания и накачки воздуха в шины. Шредер клапаны все еще широко используется в производстве велосипедных шин.

1911 — Филипп Страус изобрел комбинацию, где, была резиновая трубка, заполненная воздухом внутри и резиновая шина с внешней стороны.

1933 — немецкий инженер и предприниматель, эмигрировавший в Америку Игнац Швин разработал расширенную шину, которая дала начало внедорожному использованию велосипеда.

1978 — Запуск в производство первых высококачественных складных шин Turbo.

Современные велосипедные шины используются с 1970-х годов, со многими доработками и усовершенствованиями, направленными на надёжность и для улучшения спортивных результатов. Современные шины разработаны с большим акцентом на аэродинамику, легкий вес с применением специальных материалов, которые обеспечивают эффективность и минимальное сопротивление при движении. С появлением современных технологий и автоматизированного проектирования велосипедная шина продолжает развиваться.

Также на эту тему читать:

Или взять, например период с 1951 по 1956 год, когда группа молодых велосипедистов, числом около 20-ти человек из Франции попробовали разработать велосипед удивительно похожий на современный горный. Он был оснащён большим количеством технических новинок…

Определить изобретателя и место изобретения практически невозможно, теория об этом строится на догадках и тех малых обрывках информации, которые дошли до наших дней. Примерно также, как нельзя определить когда и где люди научились использовать процесс горения…

1817 – немецкий барон Карл фон Дрейс изобрёл велосипед, сделанный полностью из дерева. Можно сказать, что на нём были установлены деревянные шины…

Имея мобильный телефон или любое средство выхода в интернет, можно посмотреть, где в вашем районе поблизости имеется свободный велосипед и сделать заявку на его использование перед выходом из дома. После этого заказчик получает пин код…

Скорость и маневренность, небольшие габариты и дешевизна велосипеда сыграли свою роль в выборе этого вида транспорта для оснащения полицейских патрулей. Велосипед имеет преимущества движения в пробках, лавируя между автомобилями, проезд по тротуарам…

), основу к-рых (обычно 20-60% по массе) составляют каучуки . Др. компоненты резиновых смесей-вулканизующие агенты, ускорители и активаторы вулканизации (см. Вулканизация), наполнители , противо-старители, пластификаторы (мягчители). В состав смесей могут также входить регенерат (пластичный продукт регенерации резины, способный к повторной вулканизации), замедлители подвулканизации , модификаторы, красители , порообра-зователи, антипирены , душистые в-ва и др. ингредиенты, общее число к-рых может достигать 20 и более. Выбор каучука и состава резиновой смеси определяется назначением, условиями эксплуатации и техн. требованиями к изделию, технологией произ-ва, экономич. и др. соображениями (см. Каучук натуральный , Каучуки синтетические).

Технология произ-ва изделий из резины включает смешение каучука с ингредиентами в смесителях или на вальцах, изготовление полуфабрикатов (шприцеванных профилей, каландрованных листов, прорезиненных тканей , корда и т.п.), резку и раскрой полуфабрикатов, сборку заготовок изделия сложной конструкции или конфигурации с применением спец. сборочного оборудования и вулканизацию изделий в аппаратах периодич. (прессы, котлы, автоклавы , форматоры-вулканизаторы и др.) или непрерывного действия (тоннельные, барабанные и др. вулканизаторы). При этом используется высокая пластичность резиновых смесей , благодаря к-рой им придается форма будущего изделия, закрепляемая в результате вулканизации . Широко применяют формование в вулканизац. прессе и литье под давлением , при к-рых формование и вулканизацию изделий совмещают в одной операции. Перспективны использование порошкообразных каучуков и композиций и получение литьевых резин методами жидкого формования из композиций на основе жидких каучуков . При вулканизации смесей, содержащих 30-50% по массе S в расчете на каучук , получают эбониты .

Свойства. Резину можно рассматривать как сшитую коллоидную систему , в к-рой каучук составляет дисперсионную среду , а наполнители-дисперсную фазу. Важнейшее св-во резины- высокая эластичность, т. е. способность к большим обратимым деформациям в широком интервале т-р (см. Высокоэластическое состояние).

Р езина сочетает в себе св-ва твердых тел (упругость, стабильность формы), жидкостей (аморфность, высокая деформируемость при малом объемном сжатии) и газов (повышение упругости вулканизац. сеток с ростом т-ры, энтропийная природа упругости).

Р езина-сравнительно мягкий, практически несжимаемый материал. Комплекс ее св-в определяется в первую очередь типом каучука (см. табл. 1); cв-вa могут существенно изме няться при комбинировании каучуков разл. типов или их модификации.

Модуль упругости резин разл. типов при малых деформациях составляет 1-10 МПа, что на 4-5 порядков ниже, чем для стали; коэф. Пауссона близок к 0,5. Упругие св-ва резины нелинейны и носят резко выраженный релаксац. характер: зависят от режима нагружения, величины, времени, скорости (или частоты), повторности деформаций и т-ры. Деформация обратимого растяжения резины может достигать 500-1000%.

Ниж. предел температурного диапазона высокоэластичности резины обусловлен гл. обр. т-рой стеклования каучуков , а для кристаллизующихся каучуков зависит также от т-ры и скорости кристаллизации . Верх. температурный предел эксплуатации резины связан с термич. стойкостью каучуков и поперечных хим. связей, образующихся при вулканизации . Ненаполненные резины на основе некристаллизующихся каучуков имеют низкую прочность . Применение активных наполнителей (высокодисперсных саж , SiO 2 и др.) позволяет на порядок повысить прочностные характеристики резины и достичь уровня показателей резин из кристаллизующихся каучуков . Твердость резины определяется содержанием в ней наполнителей и пластификаторов , а также степенью вулканизации . Плотность резины рассчитывают как средневзвешенное по объему значение плотностей отдельных компонентов. Аналогичным образом м. б. приближенно вычислены (при объемном наполнении менее 30%) теплофиз. характеристики резин: коэф. термич. расширения, уд. объемная теплоемкость , коэф. теплопроводности . Циклич. деформирование резины сопровождается упругим гистерезисом, что обусловливает их хорошие амортизац. св-ва. Резины характеризуются также высокими фрикционными св-вами, износостойкостью, сопротивлением раздиру и утомлению, тепло- и звукоизоляц. св-вами. Они диамагнетики и хорошие диэлектрики , хотя м. б. получены токопроводящие и магнитные резины.

Р езины незначительно поглощают воду и ограниченно набу-хают в орг. р-рителях. Степень набухания определяется разницей параметров р-римости каучука и р-рителя (тем меньше, чем выше эта разность) и степенью поперечного сшивания (величину равновесного набухания обычно используют для определения степени поперечного сшивания). Известны резины, характеризующиеся масло-, бензо-, водо-, паро- и термостойкостью , стойкостью к действию хим. агрессивных сред, озона , света, ионизирующих излучений . При длит. хранении и эксплуатации резины подвергаются старению и утомлению, приводящим к ухудшению их мех. св-в, снижению прочности и разрушению. Срок службы резин в зависимости от условий эксплуатации от неск. дней до неск. десятков лет.

Классификация . По назначению различают след. осн. группы резин: общего назначения, теплостойкие, морозостойкие, маслобензостойкие, стойкие к действию хим. агрессивных сред, диэлектрич., электропроводящие, магнитные, огнестойкие, радиационностойкие, вакуумные, фрикционные, пищ. и мед. назначения, для условий тропич. климата и др. (табл. 2); получают также пористые, или губчатые (см. Пористая резина), цветные и прозрачные резины.

Применение. Резины широко используют в технике, с. х-ве, быту, медицине, стр-ве, спорте. Ассортимент резиновых изделий насчитывает более 60 тыс. наименований. Среди них: шины, транспортные ленты, приводные ремни, рукава, амортизаторы, уплотнители, сальники, манжеты, кольца и др., кабельные изделия, обувь, ковры, трубки, покрытия и облицовочные материалы, прорезиненные ткани, т. 3, М., 1977, с. 313-25; Кошелев Ф.Ф., Кор-нев А.Е., Буканов А.М., Общая технология резины, 4 изд., М., 1978; Догадкин Б. А., Донцов А.А., Шершнев В.А., Химия эластомеров , 2 изд., М., 1981; Федюкин Д.Л., Махлис Ф.А., Технические и технологические свойства резин, М., 1985; Применение резиновых технических изделий в народном хозяйстве. Справочное пособие, М., 1986; Зуев Ю. С., Дегтева Т. Г., Стойкость эластомеров в эксплуатационных условиях, М., 1986; Лепетов В. А., Юрцев Л. Н., Расчеты и конструирование резиновых изделий , 3 изд., Л., 1987. Ф.Е. Куперман.

Резина

Рези́на

эластичный материал, образующийся при вулканизации натурального и синтетического каучуков. Натуральный (природный) каучук (от индейского «слёзы дерева»: «кау» – «дерево», «учу» – «плакать») – затвердевший млечный сок (латекс) тропического растения гевеи. В кон. 15 в. каучук был привезён в Европу. В 1839 г. американский изобретатель Ч. Гудьир, нагревая смесь сырого каучука с серой и свинцом, получил новый материал, который назвали резиной (от греческого rezinos – смола), а процесс её получения – по имени бога огня Вулкана – вулканизацией. Резина – сетчатый эластомер; находясь в аморфном состоянии, она дольше, чем натуральный каучук, сохраняет свои механические свойства.

С развитием автомобилестроения резины, вырабатываемой из млечного сока гевеи, стало не хватать. Синтез первого искусственного (синтетического) каучука был осуществлён в 1931 г. русским химиком С. В. Лебедевым. Резину из каучука получают вулканизацией сложных композиций, содержащих, помимо каучука, вулканизующие агенты, активаторы вулканизации, наполнители, пластификаторы, красители, модификаторы, порообразователи, противостарители и другие компоненты. Каучук смешивают с ингредиентами в смесителе или на вальцах, изготовляют полуфабрикаты, собирают заготовки и подвергают их вулканизации при 130–200 °C. В результате вулканизации фиксируется форма изделия, оно приобретает необходимую прочность, эластичность, и другие ценные свойства. Деформация обратимого растяжения резины достигает 500-1000 %. Свойства резины существенно меняются при комбинировании каучуков различных типов или их модификации активными наполнителями (высокодисперсная сажа, силикагель). Резина почти не поглощает воду; при длительном хранении и эксплуатации стареет, снижается её прочность и эластичность. Срок службы зависит от условий работы и составляет от нескольких дней до нескольких десятков .

Резины общего назначения работают при температурах от –50 до 150 °C; используются для изготовления автомобильных шин, транспортёрных лент, приводных ремней, амортизаторов, резиновой обуви. Теплостойкие резины сохраняют свои свойства при 150–200 °C. Морозостойкие резины пригодны для эксплуатации при температурах (от –50 до –150 °C). Масло – и бензостойкие резины длительно работают в контакте с топливами, маслами, смазками и пр.; из них делают уплотнители, кольца, рукава, шланги. Резины, стойкие к действию агрессивных сред (кислоты, щёлочи, окислители), применяют при изготовлении уплотнителей, фланцев, шлангов химической аппаратуры. Диэлектрические резины с малыми диэлектрическими потерями и высокой электрической прочностью используются в изоляции проводов и кабелей, специальной обуви, перчатках, коврах и др. Электропроводящие резины идут на изготовление антистатических резинотехнических изделий, высоковольтных кабелей и кабелей дальней связи. Существуют также вакуумные, фрикционные, пищевые резины, медицинская резина, огнестойкая и радиационностойкая резина, а также прозрачные, цветные и пористые (губчатые) резины. Более половины мирового производства резины идёт на изготовление автомобильных шин.

Энциклопедия «Техника». - М.: Росмэн . 2006 .


Синонимы :

Смотреть что такое "резина" в других словарях:

    Резинат … Русское словесное ударение

    резина - ы, ж. РЕЗИНКА и, ж. resine <лат. resina смола. 1. Резина, резинка. Общее название Аптеркарское всех мастиковых соков, изтекающих собою через насечку коры из некоторых древес, каковы смолы сосновыя и елевыя, трепетин <терпентин? > и… … Исторический словарь галлицизмов русского языка

    - (лат. resina смола). Упругая смола каучукового дерева, то же, что каучук. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. РЕЗИНА лат. resina. См. КАУЧУК. Объяснение 25000 иностранных слов, вошедших в употребление в … Словарь иностранных слов русского языка

    - (от лат. resina смола) (вулканизат) эластичный материал, образующийся в результате вулканизации каучука. На практике получают из резиновой смеси, содержащей, помимо каучука и вулканизующих агентов, наполнители, пластификаторы, стабилизаторы,… …

    РЕЗИНА, резинка жен., лат. (вообще смола); сухая тягучая, упругая смола каучукового дерева; каучук, ластик или тягучка. Резинные, резинковые помочи, подвязки. Резинковые калоши. Резинит муж. горная смола, упругое ископаемое. Толковый словарь Даля … Толковый словарь Даля

    Вулканизат, гуммиластик, эформвар; покрышка; проволочка Словарь русских синонимов. резина сущ., кол во синонимов: 26 авторезина (1) … Словарь синонимов

    Резина - (от латинского resina смола), эластичный материал, образующийся в результате вулканизации каучуков. Содержит также наполнители, пластификаторы, стабилизаторы и другие компоненты. Основная масса резины используется в производстве шин (свыше 50%) и … Иллюстрированный энциклопедический словарь

    - (Rezina), город (с 1940) в Молдавии, на р. Днестр, в 6 км от ж. д. ст. Рыбница. 15,2 тыс. жителей (1991). Пищевая промышленность, производство стройматериалов. Известен с 15 в … Большой Энциклопедический словарь

    РЕЗИНА, резины, мн. нет, жен. (лат. resina смола). Мягкое эластичное вещество, представляющее собой вулканизированный каучук. Изделия из резины. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    РЕЗИНА, ы, жен. 1. Эластичный материал, получаемый путём вулканизации каучука. 2. Покрышка (во 2 знач.) из такого материала (прост.). Резину тянуть (прост. неод.) затягивать какое н. дело, решение чего н. | прил. резиновый, ая, ое (к 1 знач.).… … Толковый словарь Ожегова

    - – покрышки колес. EdwART. Словарь автомобильного жаргона, 2009 … Автомобильный словарь

Вулканизация является одной из существенных операций каучукового производства.

Изобретателем способа вулканизации считают американца Чарльза Гудьира (1800-1860), который с 1830 года пытался создать материал, способный оставаться эластичным и прочным в жару и холод. Он обрабатывал резиновую смолу кислотой, кипятил ее в магнезии, добавлял различные вещества, однако все его изделия превращались в липкую массу в первый же жаркий день. Открытие пришло к изобретателю случайно.

В 1839 году, работая на Массачусетской резиновой фабрике, он однажды уронил на раскаленную плиту ком резины, перемешанной с серой. Вопреки ожиданию, она не расплавилась, а наоборот, обуглилась, словно кожа. В первом своем патенте он предложил подвергать каучук воздействию нитрита меди и царской водки. Впоследствии изобретатель обнаружил, что резина становится невосприимчивой к температурным воздействиям при добавлении серы и свинца. После многочисленных испытаний Гудьир нашел оптимальный режим вулканизации; он смешал каучук, серу и свинцовый порошок и нагрел эту смесь до определенной температуры, в результате чего получилась резина, которая не изменяла свои свойства ни под влиянием солнечных лучей, ни под воздействием холода. Самой необыкновенной ее особенностью являлась упругость.

15 июня 1844 года он запатентовал способ вулканизации резины. Это изобретение, по мнению многих историков, поставило Чарльза Гудьира в один ряд с другими великими создателями автомобиля. А открытое явление по превращению каучука в резину получило название в честь бога огня Вулкана - вулканизация.

Для вулканизации резины прежде употребляли одну серу, но потом было предложено множество веществ, содержащих в составе серу: сернистые щелочи, сернистый кальций, сернистые мышьяк, сурьма, свинец, ртуть серноватисто-свинцовая, цинковые соли, хлористая сера и др. Таким образом, процесс вулканизации сделал возможным использование каучука в производстве, что дало толчок к промышленному производству резины и автомобильных покрышек. Начало применению каучука в шинной промышленности положили, сами того не подозревая, англичанин Роберт Вильям Томсон, который в 1846 году изобрёл «патентованные воздушные колеса», и ирландский ветеринар Джон Бойд Денлоб, натянувший каучуковую трубку на колесо велосипеда своего маленького сына.
По всему миру быстро стали множиться заводы и фабрики бытовых резиновых изделий, сильно возрос спрос на каучук в связи с развитием транспорта, особенно в автомобильной промышленности.

Крупнейшим производителем резинотехнических изделий является американская компания "Гудьир тайр энд раббер", известная прежде всего своими автомобильными покрышками. Ей принадлежат также торговые марки "Dunlop", "Fulda", "Kelly", "Debica", "Sava". История фирмы началась в 1898 году в США, когда братья Фрэнк и Чарлз Сейберлинги основали в Арконе (штат Огайо) компанию по производству шин для велосипедов и грузовиков. Новейшая история GoodYear ознаменована, прежде всего, появлением в 1992 году дождевых шин Aquatread. Идея разделить протектор глубокой центральной канавкой для лучшего водоотвода оказалась революционной. В настоящее время компания представлена на шести континентах. CoodYear продает свои шины в 185 странах. GoodYear отождествляется с безусловно высоким качеством и ведущими позициями в шинной промышленности мира.

В России первое крупное предприятие резиновой промышленности было основано в Петербурге в 1860 году, впоследствии названное "Треугольником" (с 1922 года "Красный треугольник"). За ним были основаны и другие русские заводы резиновых изделий: "Каучук" и "Богатырь" в Москве, "Проводник" в Риге и другие.

Сегодня лидирующие позиции по объемам производства всех видов шин России занимают компании «Сибур-Русские шины», «Нижнекамскшина» и «Amtel-Vredestein» (в совокупности 92,2% от общего объема производства).

Современная шинная промышленность требует постоянного обновления оборудования и технологии, так как требования к шинам стремительно повышаются. Например, в 1980-е годы легковые радиальные шины категории S (скорость до 180 км/час) являли собой одно из достижений технического прогресса, в 1990-х годах их заменили шины категории Н (скорость 210 км/час), а в настоящее время рынок требует шины категории Z (240 км/час). Для таких скоростей важнейшим эксплуатационным фактором становится силовая неоднородность. Сегодня используются новые материалы: высокопрочный текстильный корд, металлокорд, новые типы каучуков и техуглерода, кремнекислотные наполнители и другие химикатные добавки. В России только на шинных заводах «АК «Сибур» производятся такие уникальные виды шинной продукции, как цельнометаллокордные шины с металлокордом в каркасе (ЦМК, All steel), шинопневматические муфты для буровых установок, массивные шины и шины «Суперэластик».

Кто придумал зимнюю резину?

Календарь автолюбителя отличается от календаря обычного человека. Смена сезонов для владельца автомобиля ознаменована важным для него событием: сменой покрышек. Как выяснилось, далеко не все знают и понимают, для чего необходимо «переобуваться» перед началом холодов и после них. Многие воспринимают это лишь как повод для придирок гаишников. На самом же деле, от напрямую зависит безопасность движения, и смена покрышек — дело жизненно важное!

1. Отличия летней и зимней резины

Основные различия летней и зимней резины заключаются в составе самой резины и рисунке протектора.

Резина, как и любой другой материал, дубеет при низкой температуре. Соответственно, покрышка на морозе теряет мягкость, становится «пластмассовой». Это негативно отражается и на самой покрышке — она скорее , и на безопасности езды. Смену летних покрышек на зимние рекомендуют делать, когда температура воздуха понизится до +7°С. При такой температуре, и, тем более, при более низких температурах, летняя резина становится небезопасной.

Зимняя резина, за счёт специальных добавок, сохраняет мягкость и на холоде. Зная это, вы поймёте, почему не стоит на зимних покрышках ездить летом: в тепле, а уж тем более, в жару, зимняя покрышка становится слишком мягкой, чтобы обеспечить безопасность движения.

Протектор зимней резины имеет рисунок, составленный из «шашечек» различной конфигурации. Их предназначение — обеспечить сцепление покрышки с заснеженной дорогой. На летнем асфальте «шашечки» бесполезны, и даже опасны, так как такой протектор снижает управляемость автомобиля.

2. Когда появилась зимняя резина?

Первые попытки создать зимнюю резину были сделаны в Финляндии. Пионером выступила компания Suomen Gummitehtas, впоследствии переименованная, и известная сегодня, как Nokian.

В продажу зимние шины поступили в 60-х годах XX века. От летней резины они отличались лишь наличием металлических деталей, прообразом современных шипов. Шипы улучшали сцепление колеса с дорогой, но сама резина продолжала трескаться и лопаться на морозе.

Следующий шаг в эволюции зимней резины был сделан компанией Metzeler. Её специалисты после ряда экспериментов нашли добавку, которая позволяла резине сохранять упругость и на холоде. Такой добавкой стала кремниевая кислота.

Между тем, в ряде стран запретили использование шипованных покрышек, ввиду того, что они негативно воздействовали на дорожное покрытие. Производители направили свои усилия на создание шин с особым, «зимним», рисунком протектора. Первой нешипованные зимние покрышки потребителям предложила компания Bridgestone в 1982 году.

Таким образом, появлению современной зимней резины мы обязаны не какому-то одному гениальному изобретателю, а совместным усилиям инженеров ведущих мировых производителей автомобильных покрышек.

3. Шиномонтаж

Осуществляется по тем же правилам, что и летней резины. Проследите, чтобы при установке было соблюдено направления вращения покрышек. Потребуйте от сотрудников мастерской тщательно отбалансировать колёса. Нелишним будет после установки зимней резины проверить и отрегулировать развал-схождение.