Скачать презентацию на тему щелочные металлы. Применение щелочных металлов. Электропроводны и теплопроводны






















1 из 21

Презентация на тему:

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

Химические элементы главной подгруппы IА группы периодической системы элементов Д. И. Менделеева: Li, Na, К, Rb, Cs, Fr. Название получили от гидрооксидов Щелочных металлов, названных едкими щелочами. Атомы Щелочных металлов имеют на внешней оболочке по 1 s-электрону, а на предшествующей -2 s- и 6 р-электронов (кроме Li). Характеризуются низкими температурами плавления, малыми значениями плотностей; мягкие, режутся ножом. Степень окисления Щелочных металлов в соединениях всегда равна +1. Эти металлы химически очень активны - быстро окисляются кислородом воздуха, бурно реагируют с водой, образуя щёлочи MeOH (где Me - металл); активность возрастает от Li к Fr.

№ слайда 3

Описание слайда:

Литий (лат.- lithium), Li-химический элемент первой группы, А-подгруппы периодической системы Д. И. Менделеева, относится к щелочным металлам, порядковый номер 3, атомная масса равна 6,939; при нормальных условиях серебристо-белый, легкий металл. Природный литий состоит из двух изотопов с массовыми числами 6 и 7. Интересная деталь: стоимость изотопов лития совсем не пропорциональна их распространенности. В начале этого десятилетия в США относительно чистый литий-7 стоил почти в 10 раз дороже лития-6 очень высокой чистоты. Искусственным путем получены еще два изотопа лития. Время их жизни крайне невелико: у лития-8 период полураспада равен 0,841 секунды, а у лития-9 0,168 секунды.

№ слайда 4

Описание слайда:

Литий - типичный элемент земной коры, сравнительно редкий элемент.(содержание 3,2×10-3% по массе), он накапливается в наиболее поздних продуктах дифференциации магмы - пегматитах. В мантии мало лития - в ультраосновных породах всего 5×10-3% (в основных 1,5×10-3%, средних - 2×10-3%, кислых 4×10-3%). Близость ионных радиусов Li+, Fe2+ и Mg2+ позволяет литию входить в решётки магнезиально-железистых силикатов - пироксенов и амфиболов. В гранитоидах он содержится в виде изоморфной примеси в слюдах. Только в пегматитах и в биосфере известно 28 самостоятельных минералов лития (силикаты, фосфаты и др.). Все они редкие. В биосфере литий мигрирует сравнительно слабо, роль его в живом веществе меньше, чем остальных щелочных металлов. Из вод он легко извлекается глинами, его относительно мало в Мировом океане (1,5×10-5%).

№ слайда 5

Описание слайда:

Калий (Kalium) Калий химический элемент I группы периодической системы Менделеева; атомный номер 19, атомная масса 39,098; серебристо-белый, очень лёгкий, мягкий и легкоплавкий металл. Элемент состоит из двух стабильных изотопов - 39K (93,08%), 41K (6,91%) и одного слабо радиоактивного 40K (0,01%) с периодом полураспада 1,32×109 лет.

№ слайда 6

Описание слайда:

Нахождение в природе Калий - распространённый элемент: содержание в литосфере 2,50% по массе. В магматических процессах калий, как и натрий, накапливается в кислых магмах, из которых кристаллизуются граниты и др. породы (среднее содержание калия 3,34%). Калий входит в состав полевых шпатов и слюд. В основных и ультраосновных породах, богатых железом и магнием, калия мало. На земной поверхности калий, в отличие от натрия, мигрирует слабо. При выветривании горных пород калий частично переходит в воды, но оттуда его быстро захватывают организмы и поглощают глины, поэтому воды рек бедны калием и в океан его поступает много меньше, чем натрия. В океане калий поглощается организмами и донными илами (например, входит в состав глауконита); поэтому океанические воды содержат лишь 0,038% калия - в 25 раз меньше, чем натрия.

№ слайда 7

Описание слайда:

В природе – девятый по химической распространенности элемент (шестой среди металлов), находится только в виде соединений. Входит в состав многих минералов, горных пород, соляных пластов. Третий по содержанию металл в природных водах: 1 л морской воды содержит 0,38 г ионов K+. Катионы калия хорошо адсорбируются почвой и с трудом вымываются природными водами. Жизненно важный элемент для всех организмов. Ионы K+ всегда находятся внутри клеток (в отличие от ионов Na+). В организме человека содержится около 175 г калия, суточная потребность составляет около 4 г. Недостаток калия в почве восполняется внесением калийных удобрений – хлорида калия KCl, сульфата калия K2SO4 и золы растений.

№ слайда 8

Описание слайда:

Интересные факты ДЛЯ ЧЕГО НУЖЕН ЦИАНИСТЫЙ КАЛИЙ? Для извлечения золота и серебра из руд. Для гальванического золочения и серебрения неблагородных металлов. Для получения многих органических веществ. Для азотирования стали - это придаёт её поверхности большую прочность. К сожалению, это очень нужное вещество чрезвычайно ядовито. А выглядит KCN вполне безобидно: мелкие кристаллы белого цвета с коричневатыми или серым оттенком.

№ слайда 9

Описание слайда:

Цезий Открыт цезий сравнительно недавно, в 1860 г., в минеральных водах известных целебных источников Шварцвальда (Баден-Баден и др.). За короткий исторический срок прошел блистательный путь – от редкого, никому не ведомого химического элемента до стратегического металла. Принадлежит к трудовой семье щелочных металлов, по в жилах его течет голубая кровь последнего в роде... Впрочем, это нисколько не мешает ему общаться с другими элементами и даже, если они не столь знамениты, он охотно вступает с ними в контакты и завязывает прочные связи. В настоящее время работает одновременно в нескольких отраслях: в электронике и автоматике, в радиолокации и кино, в атомных реакторах и на космических кораблях...».

№ слайда 10

Описание слайда:

Цезий, как известно, был первым элементом, открытым с помощью спектрального анализа. Ученые, однако, имели возможность познакомиться с этим элементом еще до того, как Роберт Бунзен и Густав Кирхгоф создали новый исследовательский метод. В 1846 г. немецкий химик Платтнер, анализируя минерал поллуцит, обнаружил, что сумма известных его компонентов составляет лишь 93%, но не сумел точно установить, какой еще элемент (или элементы) входит в этот минерал. Лишь в 1864 г., уже после открытия Бунзена, итальянец Пизани нашел цезий в поллуците и установил, что именно соединения этого элемента не смог идентифицировать Платтнер.

№ слайда 11

Описание слайда:

Интересные факты Цезий и давление Все щелочные металлы сильно изменяются под действием высокого давления. Но именно цезий реагирует на него наиболее своеобразно и резко. При давлении в 100 тыс. атм. его объем уменьшается почти втрое – сильнее, чем у других щелочных металлов. Кроме того, именно в условиях высокого давления были обнаружены две новые модификации элементарного цезия. Электрическое сопротивление всех щелочных металлов с ростом давления увеличивается; у цезия это свойство выражено особенно сильно.

№ слайда 12

Описание слайда:

Франций Среди элементов, стоящих в конце периодической системы Д.И. Менделеева, есть такие, о которых многое слышали и знают неспециалисты, но есть и такие, о которых мало что сможет рассказать даже химик. К числу первых относятся, например, радон (№86) и радий (№88). К числу вторых – их сосед по периодической системе элемент №87 – франций. Франций интересен по двум причинам: во-первых, это самый тяжелый и самый активный щелочной металл; во-вторых, франций можно считать самым неустойчивым из первых ста элементов периодической системы. У самого долгоживущего изотопа франция – 223Fr – период полураспада составляет всего 22 минуты. Такое редкое сочетание в одном элементе высокой химической активности с низкой ядерной устойчивостью определило трудности в открытии и изучении этого элемента.

№ слайда 13

Описание слайда:

Нахождение в природе Помимо 223Fr, сейчас известно несколько изотопов элемента №87. Но только 223Fr имеется в природе в сколько-нибудь заметных количествах. Пользуясь законом радиоактивного распада, можно подсчитать, что в грамме природного урана содержится 4·10–18 г 223Fr. А это значит, что в радиоактивном равновесии со всей массой земного урана находится около 500 г франция-223. В исчезающе малых количествах на Земле есть еще два изотопа элемента №87 – 224Fr (член радиоактивного семейства тория) и 221Fr. Естественно, что найти на Земле элемент, мировые запасы которого не достигают килограмма, практически невозможно. Поэтому все исследования франция и его немногих соединений были выполнены на искусственных продуктах.

№ слайда 14

Описание слайда:

Интересные факты Натрий на подводной лодке Натрий плавится при 98°, а кипит только при 883°C. Следовательно, температурный интервал жидкого состояния этого элемента достаточно велик. Именно поэтому (и еще благодаря малому сечению захвата нейтронов) натрии стали использовать в ядерной энергетике как теплоноситель. В частности, американские атомные подводные лодки оснащены энергоустановками с натриевыми контурами. Тепло, выделяющееся в реакторе, нагревает жидкий натрий, который циркулирует между реактором и парогенератором. В парогенераторе натрий, охлаждаясь, испаряет воду, и полученный пар высокого давления вращает паровую турбину. Для тех же целей используют сплав натрия с калием.

№ слайда 15

Описание слайда:

Неорганический фотосинтез Обычно при окислении натрия образуется окись состава Na2О. Однако если сжигать натрий в сухом воздухе при повышенной температуре, то вместо окиси образуется перекись N2О2. Это вещество легко отдает своя «лишний» атом кислорода и обладает поэтому сильными окислительными свойствами. Одно время перекись натрия широко применяли для отбелки соломенных шляп. Сейчас удельный вес соломенных шляп в использовании перекиси натрия ничтожен; основные количества ее используют для отбелки бумаги и для регенерации воздуха на подводных лодках. При взаимодействии перекиси натрия с углекислым газом протекает процесс, обратный дыханию: 2Na2О2 + 2СО2 → 2Na2CО3 + О2, т.е. углекислый газ связывается, а кислород выделяется. Совсем как в зеленом листе!

№ слайда 16

Описание слайда:

Натрий и золото К тому времени, как был открыт натрий, алхимия была уже не в чести, и мысль превращать натрий в золото не будоражила умы естествоиспытателей. Однако сейчас ради получения золота расходуется очень много натрия. «Руду золотую» обрабатывают раствором цианистого натрия (а его получают из элементарного натрия). При этом золото превращается в растворимое комплексное соединение, из которого его выделяют с помощью цинка. Золотодобытчики – среди основных потребителей элемента №11. В промышленных масштабах цианистый натрий получают при взаимодействии натрия, аммиака и кокса при температуре около 800°C.

№ слайда 17

Описание слайда:

Натрий в воде Каждый школьник знает, что произойдет, если бросить кусочек натрия в воду. Точнее, не в воду, а на воду, потому что натрий легче воды. Тепла, которое выделяется при реакции натрия с водой, достаточно, чтобы расплавить натрий. И вот бегает по воде натриевый шарик, подгоняемый выделяющимся водородом. Однако реакция натрия с водой – не только опасная забава; напротив она часто бывает полезной. Натрием надежно очищают от следов воды трансформаторные масла, спирты, эфиры и другие органические вещества, а с помощью амальгамы натрия (т.е. сплава натрия с ртутью) можно быстро определить содержание влаги во многих соединениях. Амальгама реагирует с водой намного спокойнее, чем сам натри. Для определения влажности к пробе органического вещества добавляют определенное количество амальгамы натрия и по объему выделившегося водорода судят о содержании влаги.

Описание слайда:

Рубидий - металл, который можно назвать химической недотрогой. От соприкосновения с воздухом он самопроизвольно воспламеняется и сгорает ярким розовато-фиолетовым пламенем. С водой взрывает, так же бурно реагирует при соприкосновении с фтором, хлором, бромом, йодом, серой. Как настоящего недотрогу, рубидий необходимо беречь от внешних воздействий. Для этой цели его помещают в сосуды, наполненные сухим керосином... Рубидий тяжелее керосина (плотность рубидия 1,5) и не реагирует с ним. Рубидий - радиоактивный элемент, он медленно испускает поток электронов, превращаясь в стронций. Наиболее замечательным свойством рубидия является его своеобразная чувствительность к свету. Под влиянием лучей света рубидий становится источником электрического тока. С прекращением светового облучения исчезает и ток. С водой Р. реагирует со взрывом, причём выделяется водород и образуется раствор гидроокиси Р., RbOH.

Описание слайда:

Интересные факты Не обошел рубидий своим вниманием и многих представителей растительного мира: следы его встречаются в морских водорослях и табаке, в листьях чая и зернах кофе, в сахарном тростнике и свекле, в винограде и некоторых видах цитрусовых. Почему его назвали рубидием? Rubidus – по-латыни «красный». Казалось бы, это имя скорее подходит меди, чем очень обыкновенному по окраске рубидию. Но не будем спешить с выводами. Это название было дано элементу №37 его первооткрывателями Кирхгофом и Бунзеном. Сто с лишним лет назад, изучая с помощью спектроскопа различные минералы, они заметили, что один из образцов лепидолита, присланный из Розены (Саксония), дает особые линии в темно-красной области спектра. Эти линии не встречались в спектрах ни одного известного вещества. Вскоре аналогичные темно-красные линии были обнаружены в спектре осадка, полученного после испарения целебных вод из минеральных источников Шварцвальда. Естественно было предположить, что эти линии принадлежат какому-то новому, до того неизвестному элементу. Так в 1861 г. был открыт рубидий



Литий (лат.- lithium), Li-химический элемент первой группы, А-подгруппы периодической системы Д. И. Менделеева, относится к щелочным металлам, порядковый номер 3, атомная масса равна 6,939; при нормальных условиях серебристо-белый, легкий металл.

Природный литий состоит из двух изотопов с массовыми числами 6 и 7. Интересная деталь: стоимость изотопов лития совсем не пропорциональна их распространенности. В начале этого десятилетия в США относительно чистый литий-7 стоил почти в 10 раз дороже лития-6 очень высокой чистоты.

Искусственным путем получены еще два изотопа лития. Время их жизни крайне невелико: у лития-8 период полураспада равен 0,841 секунды, а у лития-9 0,168 секунды.


Литий - типичный элемент земной коры, сравнительно редкий элемент.(содержание 3,2×10-3% по массе), он накапливается в наиболее поздних продуктах дифференциации магмы - пегматитах. В мантии мало лития - в ультраосновных породах всего 5×10-3% (в основных 1,5×10-3%, средних - 2×10-3%, кислых 4×10-3%). Близость ионных радиусов Li+, Fe2+ и Mg2+ позволяет литию входить в решётки магнезиально-железистых силикатов - пироксенов и амфиболов. В гранитоидах он содержится в виде изоморфной примеси в слюдах. Только в пегматитах и в биосфере известно 28 самостоятельных минералов лития (силикаты, фосфаты и др.). Все они редкие. В биосфере литий мигрирует сравнительно слабо, роль его в живом веществе меньше, чем остальных щелочных металлов. Из вод он легко извлекается глинами, его относительно мало в Мировом океане (1,5×10-5%).

В человеческом организме (массой 70 кг) - 0,67 мг. лития.


Калий (Kalium)

Калий химический элемент I группы периодической системы Менделеева; атомный номер 19, атомная масса 39,098; серебристо-белый, очень лёгкий, мягкий и легкоплавкий металл. Элемент состоит из двух стабильных изотопов - 39K (93,08%), 41K (6,91%) и одного слабо радиоактивного 40K (0,01%) с периодом полураспада 1,32×109 лет.


Нахождение в природе


В природе – девятый по химической распространенности элемент (шестой среди металлов), находится только в виде соединений. Входит в состав многих минералов, горных пород, соляных пластов. Третий по содержанию металл в природных водах: 1 л морской воды содержит 0,38 г ионов K+. Катионы калия хорошо адсорбируются почвой и с трудом вымываются природными водами.

Жизненно важный элемент для всех организмов. Ионы K+ всегда находятся внутри клеток (в отличие от ионов Na+). В организме человека содержится около 175 г калия, суточная потребность составляет около 4 г. Недостаток калия в почве восполняется внесением калийных удобрений – хлорида калия KCl, сульфата калия K2SO4 и золы растений.


ДЛЯ ЧЕГО НУЖЕН ЦИАНИСТЫЙ КАЛИЙ?






Нахождение в природе

Помимо 223Fr, сейчас известно несколько изотопов элемента №87. Но только 223Fr имеется в природе в сколько-нибудь заметных количествах. Пользуясь законом радиоактивного распада, можно подсчитать, что в грамме природного урана содержится 4·10–18 г 223Fr. А это значит, что в радиоактивном равновесии со всей массой земного урана находится около 500 г франция-223. В исчезающе малых количествах на Земле есть еще два изотопа элемента №87 – 224Fr (член радиоактивного семейства тория) и 221Fr. Естественно, что найти на Земле элемент, мировые запасы которого не достигают килограмма, практически невозможно. Поэтому все исследования франция и его немногих соединений были выполнены на искусственных продуктах.


Натрий на подводной лодке






Рубидий - радиоактивный элемент, он медленно испускает поток электронов, превращаясь в стронций.

Наиболее замечательным свойством рубидия является его своеобразная чувствительность к свету. Под влиянием лучей света рубидий становится источником электрического тока. С прекращением светового облучения исчезает и ток.

С водой Р. реагирует со взрывом, причём выделяется водород и образуется раствор гидроокиси Р., RbOH.



Не обошел рубидий своим вниманием и многих представителей растительного мира: следы его встречаются в морских водорослях и табаке, в листьях чая и зернах кофе, в сахарном тростнике и свекле, в винограде и некоторых видах цитрусовых.

Почему его назвали рубидием? Rubidus – по-латыни «красный». Казалось бы, это имя скорее подходит меди, чем очень обыкновенному по окраске рубидию. Но не будем спешить с выводами.

Это название было дано элементу №37 его первооткрывателями Кирхгофом и Бунзеном. Сто с лишним лет назад, изучая с помощью спектроскопа различные минералы, они заметили, что один из образцов лепидолита, присланный из Розены (Саксония), дает особые линии в темно-красной области спектра. Эти линии не встречались в спектрах ни одного известного вещества. Вскоре аналогичные темно-красные линии были обнаружены в спектре осадка, полученного после испарения целебных вод из минеральных источников Шварцвальда. Естественно было предположить, что эти линии принадлежат какому-то новому, до того неизвестному элементу. Так в 1861 г. был открыт рубидий

Слайд 2

Цель урока:

  • Дать общую характеристику щелочным металлам.
  • Рассмотреть их электронное строение, сравнить физические и химические свойства.
  • Узнать о важнейших соединениях металлов и их тривиальных названиях.
  • Определить области применения этих соединений.
  • Слайд 3

    Ребус

  • Слайд 4

    Щелочные металлы

    Эти металлы получили название щелочных, потому что большинство их соединений растворимы в воде. По-славянски «выщелачивать» означает «растворять», это и определило название данной группы металлов

    Слайд 5

    История открытия металлов

    • В 1807 г. в Англии Г. Деви открыл натрий и калий. «Натрун» - сода, «алкали» - щелочь.
    • В 1817г. в Швеции А. Арфведсоном был открыт литий. «Литос» - камень.
    • В 1860 – 1861г.г. в Германии Р.Бунзен и Г.Кирхгоф открыли рубидий «темно-красный» и цезий «небесно-голубой».
    • В 1939г. во Франции М. Перей открыла радиоактивный элемент франций, который назвала в честь своей страны – Франции.
  • Слайд 6

    Нахождение в природе

    Как очень активные металлы, они встречаются в природе только в виде соединений. Натрий и калий широко распространены в природе в виде солей. Соединения других щелочных металлов встречаются редко.

    • Кристаллы хлорида натрия – минерал галит
    • Карбонат калия-поташ.
    • Лепидолит- один из основных источников редких щелочных металлов, рубидия и цезия
  • Слайд 7

    Биологическая роль Na и К

    • Na+- внутриклеточный ион, содержится в крови и лимфе, создает в клетках осмотическое давление.
    • K+ - внеклеточный ион, поддерживает работу сердца и мышц. Большое количество калия содержится в кураге, сое, фасоли, зеленом горошке, черносливе, изюме.
  • Слайд 8

    Физические свойства

  • Слайд 9

    Слайд 10

    Характеристика металлов как химических элементов

  • Слайд 11

    Изменение свойств в группе

    В ряду щелочных металлов Fr, Cs, Rb, K, Na, Li:

    • Радиус атома увеличивается
    • Увеличиваются восстановительные свойства (способность отдавать электроны)
    • Уменьшается прочность химической связи металл – металл
    • Уменьшается температура плавления, температура кипения
  • Слайд 12

    Химические свойства

    Щелочные металлы активно взаимодействуют почти со всеми неметаллами:

    • 2Ме0 + Н20 = 2Ме+1Н-1 (гидрид)
    • 2Na + H2 = 2NaH
    • 2Ме0 + Cl20 = 2Mе+1Cl-1 (хлорид)
    • 2Ме0+ S0 = Mе+12S (сульфид)

    С кислородом натрий образует пероксиды:

    • 2Ме0+О20=Ме+12О2-1 (пероксид
    • 2Na + O2 = Na2O2
  • Слайд 13

    Слайд 14

    Все щелочные металлы активно реагируют с водой, образуя щелочи и восстанавливая воду до водорода:

    • 2Ме0 + 2Н2О = 2Ме+1ОН + Н2
    • 2Na +2Н2О = 2NaOH + H2

    Скорость взаимодействия щелочного металла с водой увеличивается от лития к цезию опыт

    Кусочек металлического натрия реагирует с водой в присутствии фенолфталеина

    Слайд 15

    Слайд 16

    Окраска пламени ионами щелочных металлов

  • Слайд 17

    Слайд 18

    Самые распространенные соединения металлов и их применение

    • NaOH – едкий натр, каустическая сода.
    • KOH - едкое кали.
    • Na2CO310H2O –кристаллическая сода.
    • NaHCO3 – пищевая сода.
    • K2CO3 -поташ.
    • Na2SO410H2O – глауберова соль.

    Используют для очистки нефтепродуктов, производства бумаги, мыла, волокон, стекла, удобрений. Применяют в медицине и фармакологии.

    Слайд 19

    Применение поваренной соли

    • Гидроксид натрия
    • Соляная кислота
    • Производство мыла
    • Пищевая промышленность
  • Слайд 20

    Контрольный тест

    1.К группе щелочных металлов относятся:

    • а) Li, Na, K, Cu, Pb, Ag б) Li,Na,K, Rb,Cs,Fr
    • в) Li, Be, B, C, N, O г) Li, Na, Be, Mg, K, Ca

    2.Строение внешнего энергетического уровня щелочных металлов отражает электроннаяформула:

    • а) ns1б) ns 2
    • в) ns1np6г) np1

    3. Для щелочных металлов характерны свойства:

    • а) окислителей
    • б) восстановителей и окислителей
    • в) окислителей и восстановителей
    • г)восстановителей

    4. Щелочные металлы взаимодействуют со всеми веществами группы

    • а) HCl, H2O, H2, SO3, O2
    • б) O2, N2, S, H2O, Cu
    • в) O2, H2, S, H2O
    • г) KOH, H2, O2, H2O

    5. Активность атомов щелочных металлов увеличивается в ряду:

    • а) Li, Na, K, Rb, Cs, Fr
    • б) Fr, Cs, Rb, K, Na, Li
    • в) Na, Li, Rb, K, Fr, Cs
    • г) K, Na, Li, Rb, Cs, Fr
  • Слайд 21

    Ключ к проверке тестов

    1б 2а 3г 4в 5а

    Слайд 22

    Домашнее задание

    Повторить § 39, придумать загадки о металлах, упр. 1-5,11-на «5».

    Посмотреть все слайды



































    Назад Вперёд

    Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

    Цель: повторить свойства металлов, систематизировать и углубить знания о щелочных металлах на основании их сравнительной характеристики. Сформировать понятие о физических и химических свойствах щелочных металлов.

    Оборудование:

    • Персональный компьютер, мультимедийный проектор, презентация «Щелочные металлы»;
    • Технологическая карта урока для индивидуальной работы учащихся с напечатанными на нем заданиями для каждого ученика (приложение 1);
    • Демонстрационныеопыты:
      1. Качественное определение щелочных металлов: соли лития, натрия, калия, спиртовка.

    Ход урока

    Этапы урока Деятельность учителя Деятельность ученика
    I Организационный этап Приветствует обучающихся, определяет готовность обучающихся к работе на занятии. Приветствуют учителя, проверяют свои рабочие места
    II Целеполагание планирование деятельности

    Актуализация знаний. Проводится беседа по следующим вопросам:

    1. Как объяснить, что химические элементы делятся на металлы и неметаллы?
    2. Что общего в строении атомов металлов?
    3. Какие элементы можно отнести к типичным металлам?
    Далее учащимся раздаются технологические карты урока для индивидуальной работы учащихся с напечатанными на нем заданиями.
    Отвечают на вопросы. Вместе с учителем формулируют тему и цели урока. Записывают тему урока в технологическую карту.
    III Изучение нового материала, работа с Периодической таблицей Объясняет порядок работы с технологической картой. Презентация «Щелочные металлы» работа с периодической таблицей Д.И.Менделеева, знакомство с историей открытия щелочных металлов. Заполняют технологическую карту по таблице Менделеева:
    • Русское название химического элемента.
    • Химический знак.
    • Цвет, агрегатное состояние простого вещества.
    • Год открытия.
    • Кем открыт.
    • Атомная масса
    • Температура плавления.
    • Температура кипения.
    Рассматривают фотографии и видео простых веществ.
    б) электронное строение Исходя из нахождения в Периодической системе химических элементов дают сравнительную характеристику щелочных металлов Записывают:
    • число электронных слоев
    • изменение притяжения электронов к ядру
    • изменение окислительной способности (неметаллических свойств)
    • внешнее электронное строение атомов
    в) нахождение в природе. Знакомство с минералами щелочных металлов, их характеристикой. Выступление ученика: «Галогениды щелочных металлов, добываемые в Башкортостане (поваренная соль и пр.).
    г) химические свойства В технологической карте составляют уравнение реакции и расставляют коэффициенты. Техника безопасности при работе со щелочными металлами.
    Демонстрация опытов: 1) Взаимодействие щелочных металлов с водой: металлический натрий, вода, фенолфталеин;2) Качественное определение щелочных металлов: соли лития, натрия, калия, спиртовка.
    В технологической карте составляют уравнения реакций и расставляют коэффициенты.
    д) получение и применение щелочных металлов Знакомство с методами получения щелочных металлов, применением щелочных металлов. Выступление ученика: «Биологическая роль ионов щелочных металлов»
    IV Первичная проверка усвоения материала и закрепление знаний Для закрепления и проверки знаний предлагаются разные по форме и содержанию задания: «заполни пропуски» физические свойства; тесты со множественным выбором; тренажер на знание химических свойств щелочных металлов. Ученики могут выполнить их все, а можно выбрать на свое усмотрение лишь одно из заданий.
    V Подведение итогов урока Подведение итогов урока, выставление оценок учащимся за активную работу.
    VI Домашнее задание Сообщает д/з Записывают д/з

    Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


    Подписи к слайдам:

    Центр дистанционного образования детей-инвалидов при ОГАОУ «Белгородский инженерный юношеский лицей-интернат» ЩЕЛОЧНЫЕ МЕТАЛЛЫ Выполнила: Быкова О.С., учитель химии

    Цель: повторить свойства металлов, систематизировать и углубить знания о щелочных металлах на основании их сравнительной характеристики. Сформировать понятие о физических и химических свойствах щелочных металлов.

    Строение и свойства атомов

    Щелочные металлы - это элементы главной подгруппы I группы: литий Li, натрий Nа, калий К, рубидий Rb, цезий Сs , франций Fr.

    На внешнем энергетическом уровне атомы этих элементов содержат по одному электрону, находящемуся на сравнительно большом удалении от ядра. Они легко отдают этот электрон, поэтому являются очень сильными восстановителями. Во всех своих соединениях щелочные металлы проявляют степень окисления +1. Восстановительные свойства их усиливаются при переходе от Li к Сs, что связано с ростом радиусов их атомов. Это наиболее типичные представители металлов: металлические свойства выражены у них особенно ярко.

    Щелочные металлы - простые вещества

    Серебристо-белые мягкие вещества (режутся ножом), с характерным блеском на свежесрезанной поверхности. Все они легкие и легкоплавкие, причем, как правило, плотность их возрастает от Li к Сs, а температура плавления, наоборот, уменьшается.

    Химические свойства

    Все щелочные металлы чрезвычайно активны, во всех химических реакциях проявляют восстановительные свойства, отдают свой единственный валентный электрон, превращаясь в положительно заряженный катион. В качестве окислителей могут выступать простые вещества – неметаллы, оксиды, кислоты, соли, органические вещества.

    Взаимодействие с неметаллами

    Щелочные металлы легко реагируют с кислородом, но каждый металл проявляет свою индивидуальность: оксид образует только литий: 4Li + O2 = 2Li2O, натрий образует пероксид: 2Na + O2 = Na2O2, калий, рубидий и цезий – надпероксид: K + O2 = KO2.

    Взаимодействие с водородом, серой, фосфором, углеродом, кремнием протекает при нагревании: с водородом образуются гидриды: 2Na + H2 = 2NaH, с серой – сульфиды: 2K + S = K2S, с фосфором – фосфиды: 3K + P = K3P, с кремнием – силициды: 4Cs + Si = Cs4Si, с углеродом карбиды образуют литий и натрий: 2Li + 2C = Li2C2

    С азотом легко реагирует только литий, реакция протекает при комнатной температуре с образованием нитрида лития: 6Li + N2 = 2Li3N. С галогенами все щелочные металлы образуют галогениды: 2Na + Cl2 = 2NaCl.

    Взаимодействие с водой

    Все щелочные металлы реагируют с водой, литий реагирует спокойно, держась на поверхности воды, натрий часто воспламеняется, а калий, рубидий и цезий реагируют со взрывом:

    Щелочные металлы способны реагировать с разбавленными кислотами с выделением водорода, однако реакция будет протекать неоднозначно, поскольку металл будет реагировать и с водой, а затем образующаяся щелочь будет нейтрализоваться кислотой. При взаимодействии с кислотами-окислителями, например, азотной, образуется продукт восстановления кислоты, хотя протекание реакции также неоднозначно. Взаимодействие щелочных металлов с кислотами практически всегда сопровождается взрывом, и такие реакции на практике не проводятся. Взаимодействие с кислотами

    Соединения щелочных металлов В свободном виде в природе щелочные металлы не встречаются из-за своей исключительно высокой химической активности. Некоторые их природные соединения, в частности соли натрия и калия, довольно широко распространены, они содержатся во многих минералах, растениях, природных водах.

    Гидроксид натрия NаОН в технике известен под названиями едкий натр, каустическая сода, каустик. Техническое название гидроксида калия КОН - едкое кали. Оба гидроксида - NaОН и КОН разъедают ткани и бумагу, поэтому их называют также едкими щелочами. Едкий натр применяется в больших количествах для очистки нефтепродуктов, в бумажной и текстильной промышленности, для производства мыла и волокон. Едкое кали дороже и применяется реже. Основная область его применения - производство жидкого мыла.

    Соли щелочных металлов - твердые кристаллические вещества ионного строения. . Nа2СO3 - карбонат натрия, образует кристаллогидрат Nа2СO3* 10Н2O, известный под названием кристаллическая сода, которая применяется в производстве стекла, бумаги, мыла. Вам в быту более известна кислая соль - гидрокарбонат натрия NаНСO3 , она применяется в пищевой промышленности (пищевая сода) и в медицине (питьевая сода). К2С03 - карбонат калия, техническое название - поташ, используется в производстве жидкого мыла. Nа2SO4 10Н2O - кристаллогидратат сульфата натрия, техническое название - глауберова соль, применяется для производства соды и стекла и в качестве слабительного средства.

    NаСl - хлорид натрия, или поваренная соль, эта соль вам хорошо известна из курса прошлого года. Хлорид натрия является важнейшим сырьем в химической промышленности, широко применяется и в быту.

    Спасибо за внимание!