Регулируемый выпрямительный мост на тиристорах. Управляемые выпрямители: принцип работы, схема, область применения. Параметры двухфазных устройств

При эксплуатации выпрямительных устройств часто приходится сталкиваться с необходимостью изменения (регулировки) значения выпрямленного напряжения.

Изменение выпрямленного напряжения может осуществляться как на стороне постоянного, так и на стороне переменного тока.

Регулирование выпрямленного напряжения с помощью управляемых полупроводниковых вентилей-тиристоров применяется в настоящее время весьма широко, успешно конкурируя с выпрямителями на тиратронах вследствие ряда преимуществ тиристоров перед тиратронами.

Регулирование выпрямленного напряжения тиристором осуществляется изменение угла открытия его от (его называют также “углом отпирания” и “углом управления”), он аналогичен углу зажигания в тиратроне. Управление тиристором может быть амплитудным, фазовым и импульсно-фазовым. Ниже рассматриваются схемы, соответствующие фазовому способу регулирования.

Однополупериодный однофазный управляемый выпрямитель (рис. 4.33). Силовой трансформатор схемы имеет две вторичные обмотки: основную w2, которая служит для питания схемы выпрямителя, и управляющую обмотку wу, благодаря которой создается напряжение управления подаваемое на управляющий электрод тиристора. Угол сдвига по фазе между анодным напряжением U2 и управляющим напряжением или угол открытия определяется фазорегулятором схемы R1L, где L — дроссель насыщения. Изменяя индуктивность дросселя подмагничивающим током, можно регулировать угол открытия.

Отпирание тиристора происходит в тот момент, когда управляющее напряжение U, становится положительным (рис. 4.33, б, график Uу); запирание тиристора происходит при появлении отрицательного потенциала в аноде тиристора (отрицательный полупериод напряжения (Л). Резистор R2 ограничивает значение тока управления.

В управляемом выпрямителе, собранном по мостовой схеме (рис. 4.34,а), вторичная обмотка трансформатора управления Tу выполняется с выводом точки 3, от которой управляющее напряжение подается на тиристор VS1. На тиристор VS2. управляющее напряжение подается с фазорегулятора RP, С (с точки 4). Фазовое регулирование, т.е. изменение угла открытия, осуществляется в схеме (рис.4.34, а) переменным резистором RP. Диоды VD3 и VD4 замыкают цепи управления тиристоров.

Схема управления тиристорами работает следующим образом.

Рис. 4.33. Однополупериодная однофазная схема выпрямления на тиристоре (а). Диаграммы напряжений и токов в схеме (б)

При положительном полупериоде напряжения ток управления идет по цепи: точки 3, резистор R1, тиристор VS1, диод VD4, резистор RP, точка 1.

При отрицательном полупериоде напряжения U, ток управления идет по цепи: точка 1, резистор RP, резистор R2 тиристор VS2, диод VD3, точка 3. Выпрямленный ток протекает в один полупериод напряжения U2 через VS1 и VD1, а во второй полупериод напряжения U2.- через VS2 и VD2 причем диоды VD1, VD2 работают, как в известной мостовой однофазной схеме выпрямления.

Диод VD5, включенный в обратном направлении, устанавливается на входе фильтра (обычно фильтра LC), поскольку при запирании тиристора он замыкает цепь нагрузки в целях реализации ЭДС самоиндукции дросселя, в результате чего уменьшаются пульсации выпрямленного напряжения и повышается cosj. В маломощных регулируемых выпрямителях VD5 (нулевой диод) можно не применять.

Трансформаторы схемы Т, Ту обычно совмещаются подобно схеме на рис. 4.33,а.

Как видно из регулировочных характеристик для одной двухполупериодной схемы выпрямления (рис.4.34,6, кривые 1 и 2), угол открытия изменяется в пределах от 20-30 до 150-160°. Такой разброс в пределах регулирования объясняется тем, что при синусоидальной форме напряжения сети у тиристоров имеет место большой разброс по времени открытия их. Для уменьшения указанного разброса и расширения пределов регулирования необходимо подавать на управляющий электрод тиристора импульсы с крутым фронтом. Для этой цели применяют быстродействующие магнитные усилители или генераторы импульсов на транзисторах.


Рис. 4.34. Мостовая однофазная схема выпрямления на тиристорах (а) и регулировочные характеристики (б) (Uox — выпрямленное напряжение холостого хода)

В схеме двухполупериодного управляемого выпрямителя (рис. 4.35,а) тиристоры управляются прямоугольными импульсами, которые вырабатываются с помощью вспомогательных диодов VD1 и VD2, подключенных, как и основные вентили — тиристоры VS1 и VS2, к вторичной обмотке силового трансформатора. Таким образом, в данной схеме (рис. 4.35,а) существуют две функциональные схемы: схема двухполупериодного выпрямителя на тиристорах VS1 и VS2, аналогичная известной однотипной схеме, и схема управления углом открытия тиристоров, с помощью которой осуществляется фазовое регулирование выпрямленного напряжения; эта схема выполняется на диодах VD1 и VD2, однопереходном транзисторе VT3, на резисторах и конденсаторе схемы.

Работа схемы управления углом открытия может быть пояснена следующим образом. При подключении сетевого напряжения U1 на. выходе диодов VD1 и VD2 появится выпрямленное напряжение uab, форма которого является огибающей положительных полусинусоид напряжения u2 (рис. 4.18,б). С помощью стабилитрона VD3 и балластного резистора R1 это напряжение преобразуется в импульсы прямоугольной формы положительной полярности Uст. Эти импульсы поступают через резистор R4 на базу Б2, а также через переменный резистор R6 на эмиттер однопереходного транзистора VT3, на котором собран релаксационный генератор схемы. Поступающие на эмиттер импульсы заряжают при этом конденсатор С до тех пор, пока напряжение на нем не достигнет значения, равного Uэmax (pис. 4.18, б, график ис), причем крутизна экспоненты напряжения Uc при заряде и время заряда конденсатора С зависят от постоянной времени тз=R6 С. Когда напряжение на конденсаторе ис достигнет значения Uэmax транзистор отпирается и конденсатор С быстро разряжается через транзистор и резистор R5, поскольку R5<=R6.

При разряде конденсатора напряжение на нем уменьшается до uc=Umin, при котором транзистор запирается; конденсатор С после появления следующего прямоугольного импульса снова начинает заряжаться и т.д. В цепи базы Б1 транзистора на резисторе R5 создаются положительные импульсы малой длительности (рис. 4.35,б, график Uу), которые являются управляющими для тиристоров; резисторы R2, R3 позволяют подобрать необходимый ток управления.

Как видно из графиков, момент появления управляющих импульсов определяется моментом времени wc t1, при котором Uc =Uэmax, а момент wc t1, в свою очередь, зависит от постоянной заряда конденсатора тз=R6С. Значит, изменяя сопротивление R6, можно сдвигать во времени момент появления управляющего импульса Uу, т.е. изменять угол отпирания и время работы тиристоров, регулируя таким образом значение тока. iо в нагрузке (рис. 4.35, б). При этом следует сказать, что увеличение r6 приводит к увеличению угла отпирания, вызывая уменьшение напряжения Uo, и тока в нагрузке выпрямителя Rн.

В многофазных управляемых выпрямителях весьма удобно применять тиристоры, поскольку остальные схемы регулирования громоздки и потребляют значительные мощности.

В трехфазной мостовой схеме управляемого выпрямителя (рис. 4.36), где схемы управления (запуска) показаны условно, выходное напряжение регулируется так же, как и в предыдущих схемах, т. е. тиристоры схемы VS1-VS3 открываются управляющими импульсами, а запираются при отрицательном потенциале анода. Нагрузку индуктивного характера в этой схеме необходимо шунтировать обратным диодом (аналогично схеме на рис. 4.34, а).

Регулирование на стороне переменного тока выполняется с помощью схем встречно-параллельного и встречно-последовательного включения тиристоров как при питании от однофазной сети (рис. 4.37), так и при питании от трехфазной сети (рис. 4.38,a). При встречно-параллельном включении тиристоров (рис. 4.37,a) каждый из них работает в соответствующую часть периода напряжения сети.

Рис. 4.35. Двухполупериодная схема выпрямления на тиристорах (а), диаграммы напряжения и тока в ее цепях (б)

При встречно-последовательном включении (рис. 4.37, б) каждый тиристор схемы шунтируется обычным диодом, причем тиристор VS1 и диод VD2 проводят ток в один полупериод, а тиристор VS2 и диод VD1 — в другой полупериод переменного напряжения. Запуск тиристоров в схемах рис. 4.37, а и б производится по схеме мостового однофазного выпрямителя (рис. 4.34, а).

Рис. 4.36. Упрощенная трехфазная мостовая схема на тиристорах

Рис. 4.37. Функциональные схемы однофазных выпрямителей с

встречно-параллельным (а) и встречно-последовательным (б) включением регулирующих тиристоров на стороне переменного тока.

Рис. 4.38. Функциональная схема трехфазного выпрямителя на тиристорах (а), схема управления тиристорами выпрямителя (б)

В трехфазных выпрямителях тиристоры включаются встречно-параллельно в каждую фазу первичной обмотки силового трансформатора (рис.4.38, а), схема управления СУ каждой парой тиристоров включается между соответствующей парой и нулевым проводом, причем необходимо предусмотреть возможность регулирования момента отпирания тиристоров во всех трех фазах.

Схема управления трехфазным выпрямителем с применением однопереходных транзисторов показана на рис.4.38 сигнал управления в цепи эмиттеров транзисторов поступает от общего источника. Работа этой схемы аналогична работе схемы управления двухполупериодной схемой выпрямителя на тиристорах (рис. 4.35). Изменяя значение сопротивлений схемы, можно регулировать угол отпирания тиристоров схемы, а значит, и значение напряжения на нагрузке.

Применение тиристоров существенно повышает экономичность схемы и значительно уменьшает инерционность систем регулирования.

Недостатки управляемых выпрямителей на тиристорах сводятся к следующим: сложность схем управления, резкое увеличение коэффициента пульсации напряжения на нагрузке.

Взято с сайта http://telecommun.ru

Для регулировки выходного напряжения в цепях переменного тока с выпрямлением применяют управляемые выпрямители. Наряду с другими способами управления выходным напряжением после выпрямителя, такими как ЛАТР или реостат, управляемый выпрямитель позволяет добиться большего КПД при высокой надежности схемы, чего нельзя сказать ни о регулировании при помощи ЛАТРа, ни о реостатном регулировании.

Использование управляемых вентилей более прогрессивно и гораздо менее громоздко. Лучше всего на роль управляемых вентилей подходят тиристоры.

В исходном состоянии тиристор заперт, а возможных устойчивых состояний у него два: закрытое и открытое (проводящее). Если напряжение источника выше нижней рабочей точки тиристора, то при подаче на управляющий электрод импульса тока, тиристор перейдет в проводящее состояние, а следующие импульсы, подаваемые на управляющий электрод никак не отразятся на анодном токе, то есть цепь управления отвечает только за открывание тиристора, но не за его запирание. Можно утверждать, что тиристоры обладают значительным коэффициентом усиления по мощности.

Для выключения тиристора необходимо снизить его анодный ток, чтобы он стал меньше тока удержания, что достигается путем понижения напряжения питания или увеличением сопротивления нагрузки.

Тиристоры в открытом состоянии способны проводить токи до нескольких сотен ампер, но при этом тиристоры довольно инерционны. Время включения тиристора составляет от 100 нс до 10 мкс, а время выключения в десять раз больше - от 1 мкс до 100 мкс.

Чтобы тиристор работал надежно, скорость нарастания анодного напряжения не должна превышать 10 - 500 в/мкс, в зависимости от модели компонента, иначе может произойти ложное включение за счет действия емкостного тока через p-n переходы.

Чтобы избежать ложных включений, управляющий электрод тиристора всегда шунтируют резистором, сопротивление которого обычно лежит в диапазоне от 51 до 1500 Ом.

Помимо тиристоров для регулирования выходного напряжения в выпрямителях используют и другие : симисторы, динисторы и запираемые тиристоры. Динисторы включаются по напряжению, приложенному к аноду, и имеют они два электрода, как диоды.

Симисторы отличаются возможностью включения управляющими импульсами хоть относительно анода, хоть - относительно катода, однако все эти приборы, как и тиристоры, выключаются снижением анодного тока до значения ниже тока удержания. Что касается запираемых тиристоров, то они могут запираться подачей на управляющий электрод тока обратной полярности, однако коэффициент усиления при выключении в десять раз ниже, чем при включении.

Тиристоры, симисторы, динисторы, управляемые тиристоры, - все эти приборы используются в источниках питания и в схемах автоматики для регулирования и стабилизации напряжения и мощности, а также для целей защиты.


Как правило, в схемы управляемого выпрямления вместо диодов ставят именно тиристоры. В однофазных мостах точка включения диода и точка включения тиристора отличаются, имеет место разность фаз между ними, которую можно отразить рассмотрев угол.

Постоянная составляющая напряжения на нагрузке нелинейно связана с этим углом, поскольку напряжение питания изначально синусоидальное. Постоянная составляющая напряжения на нагрузке, подключенной после регулируемого выпрямителя может быть найдена по формуле:

Регулировочная характеристика тиристорного управляемого выпрямителя показывает зависимость выходного напряжения на нагрузке от фазы (от угла) включения моста:


На нагрузке индуктивного характера ток через тиристоры будет иметь прямоугольную форму, и при угле больше нуля будет происходить затягивание тока в связи с действием ЭДС самоиндукции от индуктивности нагрузки.


При этом основная гармоника сетевого тока будет сдвинута относительно напряжения на некоторый угол. Чтобы исключить затягивание применяют нулевой диод, через который ток может замыкаться и давать сдвиг меньше в два раза по отношению к углу включения моста.

Функциональная схема тиристорных выпрямителей для дуговой сварки в обобщенном и упрощенном виде показана на рис. 19.13 . Отличительным элементом в приведенной схеме является наличие тиристорного выпрямительного блока. Это дает возможность использовать его в качестве регулятора тока РТ. Благодаря сдвигу по времени управляющего импульса (см. рис. 19.3, б ), подаваемого на тиристорный блок, формируют вольт-амперную характеристику выпрямителя и осуществляют его настройку на заданный режим непрерывной или импульсной работы. Для этих целей в схеме источника предусмотрен блок фазоимпульсного управления БФИУ. Через этот же блок замыкаются и обратные связи от дуги на регулятор тока.

Тиристорные выпрямители , как правило, отличаются высокой стабилизацией по напряжению и току дуги при изменениях напряжения питающей сети, длины дуги и температуры окружающей среды.

Рис. 19.13. Функциональная схема выпрямителей дуги с тиристорными регуляторами тока

Получили широкое распространение выпрямители типа ВСВУ-ВСП и ВДУ-ВДГ. В настоящее время это основные выпрямители для дуговой сварки.

В выпрямителях типа ВСВУ - ВСП принцип фазорегулировки заключается в формировании пилообразного напряжения U c , сравнении его с напряжением управления U у и последующем формировании прямоугольных импульсов. На рис. 19.14 приведена карта напряжений блока формирования импульсов управления. Невысокие значения напряжения управления U y = min (вариант а) обеспечивают открытие тиристоров в силовом блоке при α = max. При этом реализуются минимальные выходные параметры источника. Максимальные значения напряжения управления U у = max (вариант б) соответствуют минимальным углам открытия тиристоров α = min и, соответственно, максимальным выходным параметрам.

Рис. 19.14. Карта напряжений блока формирования импульсов: Uc - пилообразное напряжение; Uу - напряжение управления; U0 - напряжение нс тиристорах

По принципу «вертикального управления» тиристорами разработаны широко известные, выпускаемые в больших количествах выпрямители для дуговой сварки с крутопадающими (серия ВСВУ) и пологопадающими (серия ВСП) вольт-амперными характеристиками. Единая принципиальная электрическая схема этих источников реализована в виде унифицированных блоков.

Принципиальная упрощенная электрическая схема источников питания типа ВСВУ приведена на рис. 19.15, а . Трехфазный трансформатор Т имеет одну первичную обмотку W 1 и две вторичные обмотки W 2 и W 2в. Обмотка W 2 подключена к тиристорному выпрямителю V (RT), выполняющему функции регулятора тока и имеющему нологопадающую вольт-амперную характеристику. От вторичной обмотки W 2в, напряжение подводится к диодному выпрямительному блоку V в, образующему вспомогательный источник питания с крутопадающей вольт-амперной характеристикой с помощью линейных дросселей L B . Вспомогательный источник предназначен для зажигания дуги, сварки на малых токах, обеспечивает сигналы обратной связи и др. В процессе сварки дуга питается одновременно от обоих источников. Совмещение двух источников позволило существенно снизить напряжение холостого хода основного источника и сформировать крутопадающие внешние характеристики в области рабочих токов (рис. 19.15, б ).


Рис. 19.15. Источники серии ВСВУ: а - принципиальная электрическая схема; б - вольт-амперные характеристики

Источники питания типа ВСП предназначены для механизированной сварки плавящимся электродом. В связи с этим на блок формирования импульсов поступают сигналы с блока регулирования тока и напряжения. Типовые вольт-амперные характеристики источников серии ВСП приведены на рис. 19.16 . В диапазоне 30-60 В напряжение регулируется плавно. Для улучшения динамических свойств характеристики изменяют угол ее наклона.

Рис. 19.16. Вольт-амперные характеристики источников серии ВСП

В выпрямителях типа ВДУ блок фазоимпульсного управления тиристорами состоит из трех основных элементов (рис. 19.17, а ):

· Узла формирования шестифазного синусоидального напряжения (7);

· узла формирования постоянного напряжения управления (2);

· узла формирования и усиления управляющих сигналов (3).

Рис. 19.17. Схемы управления тиристорами: а - электрическая; б - формирования положительного сигнала

Напряжение управления Uу представляет собой сумму двух встречновключенных постоянных напряжений: напряжения смещения Uсм и регулируемого напряжения задания U3.

Напряжение смещения служит для стабилизации выходных параметров выпрямителя при колебаниях напряжения сети. Регулируемое напряжение задания представляет собой часть стабилизированного напряжения и изменяется резистором. На рис. 19.17, б показано формирование положительного сигнала, подаваемого на вход узла усиления, и формирование сигнала управления тиристорами при двух различных напряжениях задания U 3l и U 32 . При изменении U 3 меняются фаза и длительность положительного гш нала на входе узла усиления (α 1 и α 2), что приводит к изменению угла открытия тиристоров и регулированию режима работы источника.

Принципиальная электрическая схема выпрямителей для дуговой сварки типа ВДУ приведена на рис. 19.18, а . Трансформатор Т имеет две вторичные обмотки, соединенные в две обратные звезды через уравнительный реактор L yp . Тиристоры V 1 - V 6 включены в каждую фазу вторичных обмоток. Линейный дроссель L сглаживает пульсации выпрямленного тока и формирует динамические свойства источника. В качестве датчика тока использован магнитный усилитель МУ. Сигнал обратной связи, пропорциональный сварочному току, снимается с резистора R oc . Внешние типовые вольт-амперные характеристики рассматриваемых выпрямителей приведены на рис. 19.18, б .

Рис. 19.18. Выпрямители типа ВДУ: а - принципиальная электрическая схема; б - вольт-амперные характеристики.

8. Тиристорные усилители с фазоимпульсным управлением

При этом способе управления в качестве управляющего сигнала используются импульсы, длительность которых, как правило, не превышает полупериода питающего напряжения. Учитывая, что время включения тиристора мало, для управления им используют обычно кратковременные импульсы длительностью от нескольких единиц до сотен микросекунд. Амплитуда управляющих импульсов тока должна превышать ток управления спрямления I У.С.

Изменяя фазу управляющих импульсов в пределах 0<α<π, регулируют напряжение в нагрузке от максимального значения до нуля. При этом методе управления полностью исключается влияние разброса входных параметров тиристора, температуры окружающей среды и p-n переходов, а также формы питающего напряжения на характеристики вход-выход усилителя. К достоинствам фазового метода управления следует отнести также малые потери в управляющем переходе тиристора благодаря кратковременности управляющего импульса. Этот метод получил наибольшее распространение в тиристорных усилителях любой мощности.


Управлять амплитудой напряжения можно различными способами. Можно установить автотрансформатор, на выходе которого напряжение изменяется в зависимости от положения бегунка автотрансформатора. Другим вариантом управления напряжением является подмагничивание сердечника трансформатора или применение дросселей насыщения, которые при подмагничивании изменяют переменную составляющую магнитного поля и соответственно напряжения. Оба приведенных метода требуют наличия громоздких и тяжелых установок.

Решение данной проблемы возможно при использовании тиристоров, которые позволяют управлять как выпрямленным действующим напряжением, так и действующим значением переменного напряжения.

На рис . 7.8, а и б представлены тиристорный управляемый выпрямитель и тиристорный регулятор мощности. Эти схемы отличаются друг от друга тем, что нагрузка в случает тиристорного управляемого выпрямителя включена после выпрямителя, а в случае тиристорного регулятора мощности - до выпрямителя. В первом случае происходит управление действующим значением выпрямленного напряжения, а во втором - действующим значением переменного напряжения.



По нагрузке, включенной после выпрямителя , протекает постоянный по направлению ток. По нагрузке, включенной перед выпрямителем , протекает переменный по направлению ток. При отсутствии запускающего импульса формирователя тиристор не открывается, поэтому ток по нагрузке не идет и падение напряжения на ней отсутствует. При отсутствии запускающих импульсов формирователя тиристор закрыт. Напряжение на тиристоре растет до того момента, пока не произойдет отпирание тиристора. При этом напряжение с открывшегося тиристора перераспределяется на нагрузку. На ри с. 7.9. (под пунктирной линией) - падение напряжения на закрытом тиристоре, а заштрихованная площадь - соответствует действующему значению напряжения на нагрузке.

Угол управления тиристора отсчитывается от момента прохождения напряжения через нулевую точку. Чем больше угол управления тиристора, тем дольше он остается закрытым, тем позже тиристор открывается, тем меньше действующее значение напряжения на нагрузке. Для однофазной цепи предельный угол управления тиристора составляет 180.электрическ. градусов. При этом угле мгновенное значение напряжения тиристора равно нулю и следовательно с подачей управляющего импульса в этот момент действующее значение напряжения на нагрузке равно нулю.

Тиристорные регуляторы мощности могут быть выполнены по разнообразным схемам. Одна из таких схем представлена на рис . 7.10. Открывание тиристоров VS 1 и VS 2 происходит поочередно. В первый полупериод открывается тиристор VS 1 , а во второй - VS 2 . Запускающие импульсы управления поступают с формирователя импульсов на тиристор по заданному углу управления. Пусть требуется получить напряжение на выходе тиристорного управляемого выпрямителя, равное половине входного, что соответствует углу управления 90 о, при максимальном угле управления 180 о. Частота сети 50 Гц , что соответствует периоду колебаний

или 20 мС .

Одна полуволна имеет длительность 10 мС , что соответствует углу управления 180 о. Для получения угла управления в 90 о необходимо запустить тиристор через 5мС после момента достижения напряжением нулевой отметки.

Схема простейшего тиристорного управляемого выпрямителя представлена на рис . 7.11.

Особенностью тиристорных регуляторов является необходимость синхронизации работы формирователя импульсов и напряжения сети. При отсутствии таковой незначительный уход частоты приведет к существенному изменению угла управления, а следовательно, и требуемое напряжение не будет соответствовать реальному напряжению.

Тиристорный управляемый выпрямитель состоит из силового блока и синхронизируемого формирователя импульсов. В состав силового блока входит выпрямитель на диодах VD 1 -VD 4 , тиристор VS и нагрузка. При больших мощностях нагрузки тиристор и диоды должны выдерживать тот ток, который требуется потребителю. Расчет этих элементов приведен в разделе «Полупроводниковые диоды».

Формирователь импульсов состоит из параметрического стабилизатора напряжения, который одновременно выполняет функции синхронизатора и блока формирования импульсов по заданному углу управления.

Параметрический стабилизатор состоит из балластного сопротивления R б и стабилитрона VD 5 . Резисторы R 1 и R 2 - делитель напряжения, задающий режим работы аналога тиристора с управлением по аноду на транзисторах VT 1 и VT 2 . Фазовращатель или времязадающая цепь построена на резисторе R 4 и конденсаторе С .

Переменный ток не пойдет через диоды выпрямителя до тех пор, пока тиристор VS не получит запускающий импульс от формирователя. Для получения запускающего импульса необходимо чтобы открылся аналог тиристора. С приходом выпрямленного напряжения на параметрический стабилизатор избытки напряжения, превышающие напряжение стабилизации падают на резистор R б , а на стабилитроне остается напряжение стабилизации, зависящее от параметров стабилитрона. На выходе параметрического стабилизатора возникают импульсы трапециидальной формы. Одновременно нулевому значению входного напряжения соответствует нулевое значение напряжения на выходе стабилизатора, т.е. происходит синхронизация напряжения питания и формирователя импульсов.

При появлении напряжения на выходе стабилитрона начинает заряжаться конденсатор С через резистор R 4 . Когда напряжение на конденсаторе достигнет напряжения срабатывания аналога тиристора, произойдет его открытие. Возникнет импульс тока разряда конденсатора С через транзисторы VT 1, VT 2 , и резистор R 3 на корпус схемы. На рис 7.11 ток разряда конденсатора показан пунктирной линией. Всплеск тока через резистор R 3 приведет к всплеску напряжения на управляющем электроде тиристора и запуску последнего. Время заряда конденсатора С относительно нулевого значения напряжения определяется параметрами резистора R 4 и емкостью конденсатора С . Цепь R 4 – C задает угол управления тиристора, соответствующий времени задержки запуска тиристора относительно нулевого напряжения. Для рассматриваемой схемы максимальный угол управления для однофазного тиристорного регулятора на частоте 50 Гц составляет 10 мС , что соответствует углу управления 180 о. Для угла управления в 90 о задержка запуска тиристора относительно нулевого значения напряжения составляет 5 мС. Изменяя положение ручки реостата R 4 можно задать любое время заряда конденсатора, т.е. задать угол управления тиристора. При перемещении бегунка реостата вверх растет сопротивление реостата, увеличивается время заряда конденсатора до напряжения включения тиристора, а, следовательно, растет угол управления тиристора и снижается действующее значение напряжения на нагрузке.

Действующее значение напряжения на нагрузке определяется по формуле

где U d - действующее значение напряжения на нагрузке; U dо – максимальное значение напряжения на нагрузке при угле управления j = 0 0 ; φ - угол управления тиристора.

При включении нагрузки R н 2 до выпрямителя, по ней протекает переменный по направлению ток только в том случае, если тиристор будет открыт. Тогда форма выходного напряжения, (т.е. на нагрузке) будет соответствующей рис . 7.12, е . Заштрихована действующая часть напряжения на нагрузке. При включении нагрузки перед выпрямителем по ней протекает переменный по направлению ток, действующее значение которого определяется временем открытого состояния тиристора, а форма выходного напряжения имеет вид рис . 7.1, ж .

Тиристор остается в схеме на прежнем месте, и формирователь остается тем же. В зависимости от того, в какой части схемы установлен резистор нагрузки, ток по ней протекает постоянный или переменный по направлению. Если по нагрузке проходит постоянный по направлению регулируемый ток, схема называется «Тиристорный управляемый выпрямитель». При включении нагрузки перед выпрямителем по ней протекает переменный по направлению ток, и схема называется «Тиристорный регулятор мощности».

Регулятор мощности можно построить и на симисторе (рис . 7.13).

Последовательно с симистором . Для открытия симистора необходимы управляющие импульсы, формирователь которых построен на парах транзисторов VT 1 -VT 2 и VT 3 -VT 4 . Каждая па

ра транзисторов представляющих собой аналоги тиристоров: VT 1 -VT 2 –с управлением по катоду, а VT 3 и VT 4 - с управлением по аноду. Балластное сопротивление R б и стабилитроны VD 1 и VD 2 образуют стабилизатор переменного напряжения. Угол управления симистора задается сопротивлением резистора (R о+R 1) и емкостью конденсатора С . При положительной полуволне верхняя обкладка конденсатора заряжается положительно, и когда напряжение на нем достигнет напряжения включения аналога тиристора происходит открытие аналога тиристора и запуск симистора VS .

Импульс тока разряда конденсатора проходит через резистор R 6 и открывает симистор.

При отрицательном полупериоде открывается аналог тиристора, построенный на транзисторах VT 3 - VT 4 и снова запускает симистор.

При работе тиристорных управляемых выпрямителей на индуктивную нагрузку (обмотки возбуждения и якорь двигателей постоянного тока) возникают проблемы выключения тиристоров, связанные с отставанием тока от напряжения. Для выключения тиристора требуется принудительная коммутация, так как ток самоиндукции обмоток возбуждения или якоря двигателя продолжает идти после достижения напряжением нулевого уровня. Этот вопрос в учебном пособии не рассматривается.

Тиристорные регулируемые выпрямители

Простейшее мощное зарядное устройство можно собрать с применением силовых тиристоров. В подобных схемах они выполняют функцию выпрямителей, к которым подведено фазовое регулирование.

Как известно, тиристор открывается при протекании тока через управляющий электрод. Величины напряжения и тока можно найти в справочниках и даташитах. Силовым тиристорам для открытия требуется импульс, что делает управление экономичным, но усложняет схему. Закрывается тиристор, как и симистор, сам, на нуле синусоиды.

Так как мы рассматриваем простейшие схемы, то рассмотрим вариант обычного фазового регулирования, который подойдёт для проверки. Первый вариант - с трансформатором, имеющим две вторичных силовых обмотки (или одну со средней точкой). В этом случае требуется всего два выпрямительных элемента, роль которых и выполняют тиристоры. Силовая часть отмечена на схеме красным цветом.


Так как мощные зарядные устройства требуются, как правило, для высоковольтных аккумуляторных батарей, то получать низкое напряжение управления с силовой вторичной обмотки не выгодно по причине рассеивания большой мощности на гасящем резисторе, который также выполняет функции регулировочного. Поэтому для питания цепей управления, помеченных на схеме зелёным цветом, имеется дополнительная обмотка, которую легко можно намотать монтажным проводом на любой части трансформатора. Количество витков следует подобрать таким, чтобы напряжение соответствовало паспортному на конкретный тиристор.

Фазовое регулирование работает очень просто. Через регулировочный резистор R1 заряжаются конденсаторы С1 и C2. Время их заряда зависит от ёмкости и сопротивления резистора. Это время и определяет момент открытия тиристора. Чем меньше сопротивление, тем быстрее зарядится конденсатор и тем раньше на данном полупериоде откроется тиристор, и тем больший ток получит нагрузка. Для тиристоров Т161 понадобились конденсаторы на 100 мкФ и резистор на 33 Ом. Обрати внимание, что ток диодов моста DB1, мощность резистора R1, ток диодов D1 и D2 должны быть соответствующими токам управления тиристоров.

Схема мощного регулируемого зарядного устройства для трансформатора с одной силовой обмоткой будет отличаться лишь тем, что здесь требуется полноценный мост из четырёх выпрямительных элементов. В качестве двух из них используем силовые диоды VD1 и VD2. Управляющая часть схемы остаётся прежней.


В случае же, если напряжение силовой обмотки невысокое, то напряжение для управления тиристорами регулятора можно брать с неё же.

Как уже было сказано, эти схемы годятся лишь для проверки работы тиристорных регуляторов; такое управление допустимо лишь на сравнительно малых токах. Для управления мощными силовыми тиристорами, работающими на больших токах, управление следует делать импульсным. Возможная схема такого управления представлена ниже:

Однопереходный транзистор здесь может быть заменён аналогом из двух биполярных. Он открывается, когда напряжение на конденсаторе C1 достигнет определённого значения, а это время определяется, как и в предыдущей схеме, ёмкостью и сопротивлением. Для того, чтобы импульс управления получился токовым, добавлен транзистор VT2. Трансформатор должен иметь соотношение обмоток 1:1 и быть импульсным, желательно - на пермаллое. Фазировка обмоток - такая, какая была на оригинальной схеме из интернета, и, возможно, здесь есть ошибка. Для управления двумя тиристорами следует добавить на этот трансформатор ещё одну обмотку.